(Ⅰ)證明, 查看更多

 

題目列表(包括答案和解析)

(Ⅰ)①證明兩角和的余弦公式Cα+β:cos(α+β)=cosαcosβ-sinαsinβ;②由Cα+β推導(dǎo)兩角和的正弦公式Sα+β:sin(α+β)=sinαcosβ+cosαsinβ.
(Ⅱ)已知△ABC的面積S=
1
2
,
AB
AC
=3
,且cosB=
3
5
,求cosC.

查看答案和解析>>

(Ⅰ)①證明兩角和的余弦公式Cα+β:cos(α+β)=cosαcosβ-sinαsinβ;
②由Cα+β推導(dǎo)兩角和的正弦公式Sα+β:sin(α+β)=sinαcosβ+cosαsinβ.
(Ⅱ)已知cosα=-
4
5
,α∈(π,
3
2
π),tanβ=-
1
3
,β∈(
π
2
,π),cos(α+β)
,求cos(α+β).

查看答案和解析>>

(Ⅰ)①證明兩角和的余弦公式;②由推導(dǎo)兩角和的正弦公式
(Ⅱ)已知△ABC的面積 S=12, •=3,且 cosB=,求cosC.

查看答案和解析>>

(Ⅰ)①證明兩角和的余弦公式Cα+β:cos(α+β)=cosαcosβ-sinαsinβ;②由Cα+β推導(dǎo)兩角和的正弦公式Sα+β:sin(α+β)=sinαcosβ+cosαsinβ.
(Ⅱ)已知△ABC的面積數(shù)學(xué)公式,且數(shù)學(xué)公式,求cosC.

查看答案和解析>>

(Ⅰ)①證明兩角和的余弦公式Cα+β:cos(α+β)=cosαcosβ-sinαsinβ;
②由Cα+β推導(dǎo)兩角和的正弦公式Sα+β:sin(α+β)=sinαcosβ+cosαsinβ.
(Ⅱ)已知數(shù)學(xué)公式,求cos(α+β).

查看答案和解析>>

 

一.選擇題

(1)D      (2)A     (3)B       (4)C       (5)B     (6)C

(7)B      (8)C     (9)A       (10)C      (11)B    (12)D

二.填空題

(13)4   (14)0.75   (15)9    (16)

三.解答題

(17)解:由

                             

得    又

于是 

      

(18)解:(Ⅰ)設(shè)A、B、C分別為甲、乙、丙三臺(tái)機(jī)床各自加工的零件是一等品的事件.

  • <dfn id="ma4a6"><noscript id="ma4a6"></noscript></dfn>
    <table id="ma4a6"><th id="ma4a6"></th></table>

      由①、③得  代入②得  27[P(C)]2-51P(C)+22=0.

    解得  (舍去).

    將     分別代入 ③、②  可得 

    即甲、乙、丙三臺(tái)機(jī)床各加工的零件是一等品的概率分別是

    (Ⅱ)記D為從甲、乙、丙加工的零件中各取一個(gè)檢驗(yàn),至少有一個(gè)一等品的事件,

    則 

    故從甲、乙、丙加工的零件中各取一個(gè)檢驗(yàn),至少有一個(gè)一等品的概率為

     

    (19)(Ⅰ)證明  因?yàn)榈酌鍭BCD是菱形,∠ABC=60°,

  • <fieldset id="ma4a6"><kbd id="ma4a6"></kbd></fieldset>
    • 由PA2+AB2=2a2=PB2   知PA⊥AB.

      同理,PA⊥AD,所以PA⊥平面ABCD.

      (Ⅱ)解  作EG//PA交AD于G,

      由PA⊥平面ABCD.

      知EG⊥平面ABCD.作GH⊥AC于H,連結(jié)EH,

      則EH⊥AC,∠EHG即為二面角的平面角.

      又PE : ED=2 : 1,所以

      從而    

      (Ⅲ)解法一  以A為坐標(biāo)原點(diǎn),直線(xiàn)AD、AP分別為y軸、z軸,過(guò)A點(diǎn)垂直平面PAD的直線(xiàn)為x軸,建立空間直角坐標(biāo)系如圖.由題設(shè)條件,相關(guān)各點(diǎn)的坐標(biāo)分別為

    • <abbr id="ma4a6"></abbr>
    • <dfn id="ma4a6"><kbd id="ma4a6"></kbd></dfn>
      <dfn id="ma4a6"><noscript id="ma4a6"></noscript></dfn>

      所以

      設(shè)點(diǎn)F是棱PC上的點(diǎn),

             令   得

      解得      即 時(shí),

      亦即,F(xiàn)是PC的中點(diǎn)時(shí),、、共面.

      又  BF平面AEC,所以當(dāng)F是棱PC的中點(diǎn)時(shí),BF//平面AEC.

      解法二  當(dāng)F是棱PC的中點(diǎn)時(shí),BF//平面AEC,證明如下,

      <strike id="ma4a6"></strike>

      由   知E是MD的中點(diǎn).

      連結(jié)BM、BD,設(shè)BDAC=O,則O為BD的中點(diǎn).

      所以  BM//OE.  ②

      由①、②知,平面BFM//平面AEC.

      又  BF平面BFM,所以BF//平面AEC.

      證法二

      因?yàn)?nbsp;

               

      所以  、共面.

      又 BF平面ABC,從而B(niǎo)F//平面AEC.

      (20)解:(Ⅰ)

      (i)當(dāng)a=0時(shí),令

      上單調(diào)遞增;

      上單調(diào)遞減.

      (ii)當(dāng)a<0時(shí),令

      上單調(diào)遞減;

      上單調(diào)遞增;

      上單調(diào)遞減.

      (Ⅱ)(i)當(dāng)a=0時(shí),在區(qū)間[0,1]上的最大值是

      (ii)當(dāng)時(shí),在區(qū)間[0,1]上的最大值是.

      (iii)當(dāng)時(shí),在區(qū)間[0,1]上的最大值是

      (21)解:(Ⅰ)依題意,可設(shè)直線(xiàn)AB的方程為 代入拋物線(xiàn)方程得   

           ①

      設(shè)A、B兩點(diǎn)的坐標(biāo)分別是 、x2是方程①的兩根.

      所以     

      由點(diǎn)P(0,m)分有向線(xiàn)段所成的比為,

      又點(diǎn)Q是點(diǎn)P關(guān)于原點(diǎn)的對(duì)稱(chēng)點(diǎn),

      故點(diǎn)Q的坐標(biāo)是(0,-m),從而.

                     

                     

      所以 

      (Ⅱ)由 得點(diǎn)A、B的坐標(biāo)分別是(6,9)、(-4,4).

        得

      所以?huà)佄锞(xiàn) 在點(diǎn)A處切線(xiàn)的斜率為

      設(shè)圓C的方程是

      解之得

      所以圓C的方程是 

      即 

      (22)(Ⅰ)證明:設(shè)點(diǎn)Pn的坐標(biāo)是,由已知條件得

      點(diǎn)Qn、Pn+1的坐標(biāo)分別是:

      由Pn+1在直線(xiàn)l1上,得 

      所以    即 

      (Ⅱ)解:由題設(shè)知 又由(Ⅰ)知

      所以數(shù)列  是首項(xiàng)為公比為的等比數(shù)列.

      從而 

      (Ⅲ)解:由得點(diǎn)P的坐標(biāo)為(1,1).

      所以 

         

      (i)當(dāng)時(shí),>1+9=10.

      而此時(shí) 

      (ii)當(dāng)時(shí),<1+9=10.

      而此時(shí) 

       


      同步練習(xí)冊(cè)答案