(A) (B)13 (C)5 (D) 查看更多

 

題目列表(包括答案和解析)

(06年山東卷文)已知x和y是正整數(shù),且滿足約束條件則z=2x+3y的最小值是(    )

(A)24         (B)14            (C)13             (D)11.5

查看答案和解析>>

(12)已知x和y是正整數(shù),且滿足約束條件則z=2x+3y的最小值是

(A)24    (B)14    (C)13    (D)11.5

查看答案和解析>>

(7)某地區(qū)有300家商店,其中大型商店有30家,中型商店有75家,小型商店有195家,為了掌握各商店的營業(yè)情況,要從中抽取一個容量為20的樣本,若采用分層抽樣的方法,抽取的中型商店數(shù)是

(A)2             (B)3               (C)5                 (D)13

查看答案和解析>>

(08年衡陽八中文)Rt△ABC的三個頂點在半徑為13的球面上,兩直角邊的長分別為6和8,則球心到平面ABC的距離是

A.5              B.6                C.10                 D.12

查看答案和解析>>

5 0件產(chǎn)品 編號為0到49,現(xiàn)從中抽取5個進行檢驗,用系統(tǒng)抽樣的方法雖抽樣本的編號可以為(  )

A、5,10,15,20,25                          B、5,13,21,29,37

C、8,22,23,1,20                           D、1,10,20,30,40

查看答案和解析>>

 

一.選擇題

(1)D      (2)A     (3)B       (4)C       (5)B     (6)C

(7)B      (8)C     (9)A       (10)C      (11)B    (12)D

二.填空題

(13)4   (14)0.75   (15)9    (16)

三.解答題

(17)解:由

                             

得    又

于是 

      

(18)解:(Ⅰ)設(shè)A、B、C分別為甲、乙、丙三臺機床各自加工的零件是一等品的事件.

  由①、③得  代入②得  27[P(C)]2-51P(C)+22=0.

解得  (舍去).

將     分別代入 ③、②  可得 

即甲、乙、丙三臺機床各加工的零件是一等品的概率分別是

(Ⅱ)記D為從甲、乙、丙加工的零件中各取一個檢驗,至少有一個一等品的事件,

則 

故從甲、乙、丙加工的零件中各取一個檢驗,至少有一個一等品的概率為

 

(19)(Ⅰ)證明  因為底面ABCD是菱形,∠ABC=60°,

    由PA2+AB2=2a2=PB2   知PA⊥AB.

    同理,PA⊥AD,所以PA⊥平面ABCD.

    (Ⅱ)解  作EG//PA交AD于G,

    由PA⊥平面ABCD.

    知EG⊥平面ABCD.作GH⊥AC于H,連結(jié)EH,

    則EH⊥AC,∠EHG即為二面角的平面角.

    又PE : ED=2 : 1,所以

    從而    

    (Ⅲ)解法一  以A為坐標原點,直線AD、AP分別為y軸、z軸,過A點垂直平面PAD的直線為x軸,建立空間直角坐標系如圖.由題設(shè)條件,相關(guān)各點的坐標分別為

      所以

      設(shè)點F是棱PC上的點,

             令   得

      解得      即 時,

      亦即,F(xiàn)是PC的中點時,、共面.

      又  BF平面AEC,所以當F是棱PC的中點時,BF//平面AEC.

      解法二  當F是棱PC的中點時,BF//平面AEC,證明如下,

        由   知E是MD的中點.

        連結(jié)BM、BD,設(shè)BDAC=O,則O為BD的中點.

        所以  BM//OE.  ②

        由①、②知,平面BFM//平面AEC.

        又  BF平面BFM,所以BF//平面AEC.

        證法二

        因為 

                 

        所以  、、共面.

        又 BF平面ABC,從而BF//平面AEC.

        (20)解:(Ⅰ)

        (i)當a=0時,令

        上單調(diào)遞增;

        上單調(diào)遞減.

        (ii)當a<0時,令

        上單調(diào)遞減;

        上單調(diào)遞增;

        上單調(diào)遞減.

        (Ⅱ)(i)當a=0時,在區(qū)間[0,1]上的最大值是

        (ii)當時,在區(qū)間[0,1]上的最大值是.

        (iii)當時,在區(qū)間[0,1]上的最大值是

        (21)解:(Ⅰ)依題意,可設(shè)直線AB的方程為 代入拋物線方程得   

             ①

        設(shè)A、B兩點的坐標分別是 、x2是方程①的兩根.

        所以     

        由點P(0,m)分有向線段所成的比為

        又點Q是點P關(guān)于原點的對稱點,

        故點Q的坐標是(0,-m),從而.

                       

                       

        所以 

        (Ⅱ)由 得點A、B的坐標分別是(6,9)、(-4,4).

          得

        所以拋物線 在點A處切線的斜率為

        設(shè)圓C的方程是

        解之得

        所以圓C的方程是 

        即 

        (22)(Ⅰ)證明:設(shè)點Pn的坐標是,由已知條件得

        點Qn、Pn+1的坐標分別是:

        由Pn+1在直線l1上,得 

        所以    即 

        (Ⅱ)解:由題設(shè)知 又由(Ⅰ)知 ,

        所以數(shù)列  是首項為公比為的等比數(shù)列.

        從而 

        (Ⅲ)解:由得點P的坐標為(1,1).

        所以 

           

        (i)當時,>1+9=10.

        而此時 

        (ii)當時,<1+9=10.

        而此時 

         


        同步練習冊答案