A. B.1 C. D.5 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)A.(選修4-4坐標(biāo)系與參數(shù)方程)已知點(diǎn)A是曲線ρ=2sinθ上任意一點(diǎn),則點(diǎn)A到直線ρsin(θ+
π3
)=4
的距離的最小值是
 

B.(選修4-5不等式選講)不等式|x-log2x|<x+|log2x|的解集是
 

C.(選修4-1幾何證明選講)如圖所示,AC和AB分別是圓O的切線,且OC=3,AB=4,延長(zhǎng)AO到D點(diǎn),則△ABD的面積是
 

查看答案和解析>>

精英家教網(wǎng)A.選修4-1:幾何證明選講
銳角三角形ABC內(nèi)接于⊙O,∠ABC=60?,∠BAC=40?,作OE⊥AB交劣弧
AB
于點(diǎn)E,連接EC,求∠OEC.
B.選修4-2:矩陣與變換
曲線C1=x2+2y2=1在矩陣M=[
12
01
]的作用下變換為曲線C2,求C2的方程.
C.選修4-4:坐標(biāo)系與參數(shù)方程
P為曲線C1
x=1+cosθ
y=sinθ
(θ為參數(shù))上一點(diǎn),求它到直線C2
x=1+2t
y=2
(t為參數(shù))距離的最小值.
D.選修4-5:不等式選講
設(shè)n∈N*,求證:
C
1
n
+
C
2
N
+L+
C
N
N
n(2n-1)

查看答案和解析>>

精英家教網(wǎng)A.如圖,四邊形ABCD內(nèi)接于⊙O,弧AB=弧AD,過(guò)A點(diǎn)的切線交CB的延長(zhǎng)線于E點(diǎn).
求證:AB2=BE•CD.
B.已知矩陣M
2-3
1-1
所對(duì)應(yīng)的線性變換把點(diǎn)A(x,y)變成點(diǎn)A′(13,5),試求M的逆矩陣及點(diǎn)A的坐標(biāo).
C.已知圓的極坐標(biāo)方程為:ρ2-4
2
ρcos(θ-
π
4
)+6=0

(1)將圓的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)若點(diǎn)P(x,y)在該圓上,求x+y的最大值和最小值.
D.解不等式|2x-1|<|x|+1.

查看答案和解析>>

A.選修4-1:幾何證明選講
如圖,直角△ABC中,∠B=90°,以BC為直徑的⊙O交AC于點(diǎn)D,點(diǎn)E是AB的中點(diǎn).
求證:DE是⊙O的切線.
B.選修4-2:矩陣與變換
已知二階矩陣A有特征值-1及其對(duì)應(yīng)的一個(gè)特征向量為
1
-4
,點(diǎn)P(2,-1)在矩陣A對(duì)應(yīng)的變換下得到點(diǎn)P′(5,1),求矩陣A.
C.選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.已知直線l的極坐標(biāo)方程為ρcos(θ-
π
4
)=
2
,曲線C的參數(shù)方程為
x=2cosα
y=sinα
(α為參數(shù)),求曲線C截直線l所得的弦長(zhǎng).
D.選修4-5:不等式選講
已知a,b,c都是正數(shù),且abc=8,求證:log2(2+a)+log2(2+b)+log2(2+c)≥6.

查看答案和解析>>

A.選修4-1:幾何證明選講
如圖,直角△ABC中,∠B=90°,以BC為直徑的⊙O交AC于點(diǎn)D,點(diǎn)E是AB的中點(diǎn).
求證:DE是⊙O的切線.
B.選修4-2:矩陣與變換
已知二階矩陣A有特征值-1及其對(duì)應(yīng)的一個(gè)特征向量為,點(diǎn)P(2,-1)在矩陣A對(duì)應(yīng)的變換下得到點(diǎn)P′(5,1),求矩陣A.
C.選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.已知直線l的極坐標(biāo)方程為,曲線C的參數(shù)方程為(α為參數(shù)),求曲線C截直線l所得的弦長(zhǎng).
D.選修4-5:不等式選講
已知a,b,c都是正數(shù),且abc=8,求證:log2(2+a)+log2(2+b)+log2(2+c)≥6.

查看答案和解析>>

一、選擇題(本大題共8小題,每小題5分,共40分)

1.B   2. B   3. C   4. C   5.D   6. B   7.C   8. B.

 

二、填空題(本大題共6小題,每小題5分,共30分)

9. 6,17,28,39,40,51,62,73 .  10. .     11. 0. 

12. 20.   13. .     14. .    15. .

三、解答題(本大題共6小題,共80分)

16.(本小題滿分12分)

解:(Ⅰ),即,

,∴.∵,∴

(Ⅱ)mn

|mn|

,∴,∴.從而

∴當(dāng)=1,即時(shí),|mn|取得最小值

所以,|mn|

 

17.(本小題滿分12分)

解:(1)設(shè)擲兩顆正方體骰子所得的點(diǎn)數(shù)記為(x,y),其中,

則獲一等獎(jiǎng)只有(6,6)一種可能,其概率為:;   

獲二等獎(jiǎng)共有(6,5)、(5,6)、(4,6)、(6,4)、(5,5)共5種可能,其概率為:;

設(shè)事件A表示“同行的三位會(huì)員一人獲一等獎(jiǎng)、兩人獲二等獎(jiǎng)”,則有:

P(A)=;                        

ξ

30-a

-70

0

30

p

(2)設(shè)俱樂(lè)部在游戲環(huán)節(jié)收益為ξ元,則ξ的可能取值為,,0,,…7分

其分布列為:

 

 

 

 

則:Eξ=

由Eξ=0得:a=310,即一等獎(jiǎng)可設(shè)價(jià)值為310 元的獎(jiǎng)品。      

 

18.(本小題滿分14分)

證明:(1)取EC的中點(diǎn)是F,連結(jié)BF,

則BF//DE,∴∠FBA或其補(bǔ)角即為異面直線DE與AB所成的角.

在△BAF中,AB=,BF=AF=.∴

∴異面直線DE與AB所成的角的余弦值為.………5分

(2)AC⊥平面BCE,過(guò)C作CG⊥DE交DE于G,連AG.

可得DE⊥平面ACG,從而AG⊥DE

∴∠AGC為二面角A-ED-B的平面角.

在△ACG中,∠ACG=90°,AC=4,CG=

.∴

∴二面角A-ED-B的的正弦值為

(3)

∴幾何體的體積V為16.

 

方法二:(坐標(biāo)法)(1)以C為原點(diǎn),以CA,CB,CE所在直線為x,y,z軸建立空間直角坐標(biāo)系.

則A(4,0,0),B(0,4,0),D(0,4,2),E(0,0,4)

,∴

∴異面直線DE與AB所成的角的余弦值為

(2)平面BDE的一個(gè)法向量為

設(shè)平面ADE的一個(gè)法向量為,

從而,

,則,

∴二面角A-ED-B的的正弦值為

(3),∴幾何體的體積V為16.

 

19.(本小題滿分14分)

【解】(Ⅰ)法1:依題意,顯然的斜率存在,可設(shè)直線的方程為,

整理得 . ①   

    設(shè)是方程①的兩個(gè)不同的根,

    ∴,   ②                 

    且,由是線段的中點(diǎn),得

    ,∴

    解得,代入②得,的取值范圍是(12,+∞).

    于是,直線的方程為,即     

    法2:設(shè),則有

        

    依題意,,∴.              

的中點(diǎn),

,,從而

又由在橢圓內(nèi),∴,

的取值范圍是.                          

直線的方程為,即.       

(Ⅱ)∵垂直平分,∴直線的方程為,即

代入橢圓方程,整理得.  ③         

又設(shè)的中點(diǎn)為,則是方程③的兩根,

到直線的距離,故所求的以線段的中點(diǎn)為圓心且與直線相切的圓的方程為:

20.(本小題滿分14分)

(Ⅰ)解:由題意得,,所以=

(Ⅱ)證:令,,則=1

所以=(1),=(2),

(2)―(1),得=,

化簡(jiǎn)得(3)

(4),(4)―(3)得

在(3)中令,得,從而為等差數(shù)列

(Ⅲ)記,公差為,則=

,

,當(dāng)且僅當(dāng),即時(shí)等號(hào)成立

 

21.(本小題滿分14分)

解:(1)由題意,≥0在上恒成立,即

         ∵θ∈(0,π),∴.故上恒成立,

         只須,即,只有.結(jié)合θ∈(0,π),得

(2)由(1),得

在其定義域內(nèi)為單調(diào)函數(shù),

或者在[1,+∞)恒成立.

 等價(jià)于,即,

     而 ,(max=1,∴

等價(jià)于,即在[1,+∞)恒成立,

∈(0,1],

綜上,m的取值范圍是

(3)構(gòu)造,

當(dāng)時(shí),,,所以在[1,e]上不存在一個(gè),使得成立.

當(dāng)時(shí),

因?yàn)?sub>,所以,,所以恒成立.

上單調(diào)遞增,,只要,

解得.故的取值范圍是

       

       


      同步練習(xí)冊(cè)答案

      <dfn id="aaxwk"></dfn>