題目列表(包括答案和解析)
(本小題滿(mǎn)分12分)設(shè)數(shù)列的前項(xiàng)和為 已知
(I)設(shè),證明數(shù)列是等比數(shù)列
(II)求數(shù)列的通項(xiàng)公式。
(本小題滿(mǎn)分13分)
對(duì)于各項(xiàng)均為整數(shù)的數(shù)列,如果(=1,2,3,…)為完全平方數(shù),則稱(chēng)數(shù)
列具有“性質(zhì)”。
不論數(shù)列是否具有“性質(zhì)”,如果存在與不是同一數(shù)列的,且同
時(shí)滿(mǎn)足下面兩個(gè)條件:①是的一個(gè)排列;②數(shù)列具有“性質(zhì)”,則稱(chēng)數(shù)列具有“變換性質(zhì)”。
(I)設(shè)數(shù)列的前項(xiàng)和,證明數(shù)列具有“性質(zhì)”;
(II)試判斷數(shù)列1,2,3,4,5和數(shù)列1,2,3,…,11是否具有“變換性質(zhì)”,具有此性質(zhì)的數(shù)列請(qǐng)寫(xiě)出相應(yīng)的數(shù)列,不具此性質(zhì)的說(shuō)明理由;
(III)對(duì)于有限項(xiàng)數(shù)列:1,2,3,…,,某人已經(jīng)驗(yàn)證當(dāng)時(shí),
數(shù)列具有“變換性質(zhì)”,試證明:當(dāng)”時(shí),數(shù)列也具有“變換性質(zhì)”。
(本題滿(mǎn)分18分;第(1)小題4分,第(2)小題6分,第(3)小題8分)
設(shè)數(shù)列是等差數(shù)列,且公差為,若數(shù)列中任意(不同)兩項(xiàng)之和仍是該數(shù)列中的一項(xiàng),則稱(chēng)該數(shù)列是“封閉數(shù)列”.
(1)若,判斷該數(shù)列是否為“封閉數(shù)列”,并說(shuō)明理由?
(2)設(shè)是數(shù)列的前項(xiàng)和,若公差,試問(wèn):是否存在這樣的“封閉數(shù)列”,使;若存在,求的通項(xiàng)公式,若不存在,說(shuō)明理由;
(3)試問(wèn):數(shù)列為“封閉數(shù)列”的充要條件是什么?給出你的結(jié)論并加以證明.
(本小題12分)設(shè)點(diǎn),點(diǎn)A在y軸上移動(dòng),點(diǎn)B在x軸正半軸(包括原點(diǎn))上移動(dòng),點(diǎn)M在AB連線上,且滿(mǎn)足,.
(Ⅰ)求動(dòng)點(diǎn)M的軌跡C的方程;
(Ⅱ)設(shè)軌跡C的焦點(diǎn)為F,準(zhǔn)線為l,自M引的垂線,垂足為N,設(shè)點(diǎn)使四邊形PFMN是菱形,試求實(shí)數(shù)a;
(Ⅲ)如果點(diǎn)A的坐標(biāo)為,,其中>,相應(yīng)線段AM的垂直平分線交x軸于.設(shè)數(shù)列的前n項(xiàng)和為,證明:當(dāng)n≥2時(shí),為定值.
(本小題滿(mǎn)分14分)已知遞增數(shù)列滿(mǎn)足:, ,且、、成等比數(shù)列。(I)求數(shù)列的通項(xiàng)公式;(II)若數(shù)列滿(mǎn)足: ,且。①證明數(shù)列是等比數(shù)列,并求數(shù)列的通項(xiàng)公式;②設(shè),數(shù)列前項(xiàng)和為, ,。當(dāng)時(shí),試比較A與B的大小。
一、選擇題
(1)B (2)C (3)A (4)D (5)D (6)B
(7)A (8)D (9)B (10)C (11)A (12) B
二、填空題:本大題共4小題,每小題4分,共16分.把答案填在題中橫線上.
(13)28 (14) (15) (16)2
三、解答題
(17)本小題主要考查同角三角函數(shù)的基本關(guān)系式,二倍角公式以及三角函數(shù)式的恒等變形等基礎(chǔ)知識(shí)和基本技能.滿(mǎn)分12分.
解:
當(dāng)為第二象限角,且時(shí)
,
所以=
(18)本小題主要考查等比數(shù)列的概念、前n項(xiàng)和公式等基礎(chǔ)知識(shí),考查學(xué)生綜合運(yùn)用基礎(chǔ)知識(shí)進(jìn)行運(yùn)算的能力.滿(mǎn)分12分.
解:(I)設(shè)等比數(shù)列{an}的公比為q,則a2=a1q, a5=a1q4.
a1q=6,
依題意,得方程組 a1q4=162.
解此方程組,得a1=2, q=3.
故數(shù)列{an}的通項(xiàng)公式為an=2?3n-1.
(II)
(19)本小題主要考查導(dǎo)數(shù)的幾何意義,兩條直線垂直的性質(zhì)以及分析問(wèn)題和綜合運(yùn)算能力.滿(mǎn)分12分.
解:y′=2x+1.
直線l1的方程為y=3x-3.
設(shè)直線l2過(guò)曲線y=x2+x-2上 的點(diǎn)B(b, b2+b-2),則l2的方程為y=(2b+1)x-b2-2
因?yàn)?i>l1⊥l2,則有2b+1=
所以直線l2的方程為
(II)解方程組 得
所以直線l1和l2的交點(diǎn)的坐標(biāo)為
l1、l2與x軸交點(diǎn)的坐標(biāo)分別為(1,0)、.
所以所求三角形的面積
(20)本小題主要考查相互獨(dú)立事件同時(shí)發(fā)生的概率和互斥事件有一個(gè)發(fā)生的概率的計(jì)算方法,應(yīng)用概率知識(shí)解決實(shí)際問(wèn)題的能力.滿(mǎn)分12分.
解:記“這名同學(xué)答對(duì)第i個(gè)問(wèn)題”為事件,則
P(A1)=0.8,P(A2)=0.7,P(A3)=0.6.
(Ⅰ)這名同學(xué)得300分的概率
P1=P(A1A3)+P(A2A3)
=P(A1)P()P(A3)+P()P(A2)P(A3)
=0.8×0.3×0.6+0.2×0.7×0.6
=0.228.
(Ⅱ)這名同學(xué)至少得300分的概率
P2=P1+P(A1A2A3)
=0.228+P(A1)P(A2)P(A3)
=0.228+0.8×0.7×0.6
=0.564.
(21)本小題主要考查棱錐的體積、二面角、異面直線所成的角等知識(shí)和空間想象能力、分析
|