(C)1.0小時(shí) (D)1.5小時(shí) 查看更多

 

題目列表(包括答案和解析)

(2013•宿遷一模)【選做題】本題包括A、B、C、D四小題,請(qǐng)選定其中兩題,并在相應(yīng)的答題區(qū)域內(nèi)作答.若多做,則按作答的前兩題評(píng)分.解答時(shí)應(yīng)寫出文字說(shuō)明、證明過程或演算步驟.
A.選修4-1:幾何證明選講
如圖,已知AB,CD是圓O的兩條弦,且AB是線段CD的 垂直平分線,若AB=6,CD=2
5
,求線段AC的長(zhǎng)度.
B.選修4-2:矩陣與變換(本小題滿分10分)
已知矩陣M=
21
1a
的一個(gè)特征值是3,求直線x-2y-3=0在M作用下的新直線方程.
C.選修4-4:坐標(biāo)系與參數(shù)方程(本小題滿分10分)
在平面直角坐標(biāo)系xOy中,已知曲線C的參數(shù)方程是
x=cosα
y=sinα+1
(α是參數(shù)),若以O(shè)為極點(diǎn),x軸的正半軸為極軸,取與直角坐標(biāo)系中相同的單位長(zhǎng)度,建立極坐標(biāo)系,求曲線C的極坐標(biāo)方程.
D.選修4-5:不等式選講(本小題滿分10分)
已知關(guān)于x的不等式|ax-1|+|ax-a|≥1的解集為R,求正實(shí)數(shù)a的取值范圍.

查看答案和解析>>

(08年銀川一中二模文) 下列說(shuō)法正確的是                                                                                                  (    )

①?gòu)膭蛩賯鬟f的產(chǎn)品生產(chǎn)流水線上,質(zhì)檢員每10分鐘從中抽取一件產(chǎn)品進(jìn)行某項(xiàng)指標(biāo)檢測(cè),這樣的抽樣是分層抽樣

②某地氣象局預(yù)報(bào):5月9日本地降水概率為90%,結(jié)果這天沒下雨,這表明天氣預(yù)報(bào)并不科學(xué)

       ③在回歸分析模型中,殘差平方和越小,說(shuō)明模型的擬合效果越好

④在回歸直線方程中,當(dāng)解釋變量x每增加一個(gè)單位時(shí),預(yù)報(bào)變量增加0.1個(gè)單位

       A.①②                   B.③④                   C.①③                   D.②④

查看答案和解析>>

8、設(shè)f(x)=x3+bx2+cx,又m是一個(gè)常數(shù).已知當(dāng)m<0或m>4時(shí),f(x)-m=0只有一個(gè)實(shí)根;當(dāng)0<m<4時(shí),f(x)-m=0有三個(gè)相異實(shí)根,現(xiàn)給出下列命題:
(1)f(x)-4=0和f'(x)=0有一個(gè)相同的實(shí)根;
(2)f(x)=0和f'(x)=0有一個(gè)相同的實(shí)根;
(3)f(x)+3=0的任一實(shí)根大于f(x)-1=0的任一實(shí)根;
(4)f(x)+5=0的任一實(shí)根小于f(x)-2=0的任一實(shí)根.其中錯(cuò)誤命題的個(gè)數(shù)是(  )

查看答案和解析>>

設(shè)f(x)=x3+ax2+bx+c,又k是一個(gè)常數(shù),已知當(dāng)k<0或k>4時(shí),f(x)-k=0只有一個(gè)實(shí)根,當(dāng)0<k<4時(shí),f(x)-k=0有三個(gè)相異實(shí)根,則下列命題中錯(cuò)誤的是( 。

查看答案和解析>>

設(shè)f(x)=x3+ax2+bx+c,又k是一個(gè)常數(shù),已知當(dāng)k<0或k>4時(shí),f(x)-k=0只有一個(gè)實(shí)根,當(dāng)0<k<4時(shí),f(x)-k=0有三個(gè)相異實(shí)根,則下列命題中錯(cuò)誤的是( )
A.f(x)-4=0和f′(x)=0有且只有一個(gè)相同的實(shí)根
B.f(x)=0和f′(x)=0有且只有一個(gè)相同的實(shí)根
C.f(x)+3=0的實(shí)根大于f(x)-1=0的任一實(shí)根
D.f(x)+5=0的實(shí)根小于f(x)-2=0的任一實(shí)根

查看答案和解析>>

 

一、選擇題:本題考查基本知識(shí)和基本運(yùn)算,每小題5分,滿分60分.

(1)A      (2)B     (3)D     (4)C      (5)A    (6)B

(7)C      (8)A     (9)D     (10)C     (11)B    (12)A

二、填空題:本題考查基本知識(shí)和基本運(yùn)算,每小題4分,滿分16分.

(13)                         (14)

(15)2                                        (16)

三、解答題

(17)本小題主要考查三角函數(shù)的基本公式和三角函數(shù)的恒等變換等基本知識(shí),以及推理能力和運(yùn)算能力.滿分12分.

      解:由已知.

  

      從而 

.

(18)本小題主要考查線面關(guān)系和正方體性質(zhì)等基本知識(shí),考查空間想象能力和推理論證能力.滿分12分.

      解法一:(I)連結(jié)BP.

      ∵AB⊥平面BCC1B1,  ∴AP與平面BCC1B1所成的角就是∠APB,

      ∵CC1=4CP,CC1=4,∴CP=I.

      在Rt△PBC中,∠PCB為直角,BC=4,CP=1,故BP=.

      在Rt△APB中,∠ABP為直角,tan∠APB=

      ∴∠APB=

(19)本小題主要考查簡(jiǎn)單線性規(guī)劃的基本知識(shí),以及運(yùn)用數(shù)學(xué)知識(shí)解決實(shí)際問題的能力.滿分12分.

      解:設(shè)投資人分別用x萬(wàn)元、y萬(wàn)元投資甲、乙兩個(gè)項(xiàng)目.

      由題意知

      目標(biāo)函數(shù)z=x+0.5y.

      上述不等式組表示的平面區(qū)域如圖所示,陰影部分(含邊界)即可行域.

      與可行域相交,其中有一條直線經(jīng)過可行域上的M點(diǎn),且

      與直線的距離最大,這里M點(diǎn)是直線

      和的交點(diǎn).

       解方程組 得x=4,y=6

      此時(shí)(萬(wàn)元).

          當(dāng)x=4,y=6時(shí)z取得最大值.

      答:投資人用4萬(wàn)元投資甲項(xiàng)目、6萬(wàn)元投資乙項(xiàng)目,才能在確保虧損不超過1.8萬(wàn)元的前提下,使可能的盈利最大.

(20)本小題主要考查數(shù)列的基本知識(shí),以及運(yùn)用數(shù)學(xué)知識(shí)分析和解決問題的能力.滿分12分.

      解:(I)當(dāng)時(shí),

             

       由

       即              又.

       (II)設(shè)數(shù)列{an}的公差為d,則在中分別取k=1,2,得

<li id="6p1ph"><em id="6p1ph"><strike id="6p1ph"></strike></em></li>
<var id="6p1ph"></var>
<dfn id="6p1ph"></dfn>
  • (1)

    (2)

           由(1)得

           當(dāng)

           若成立

           若

              故所得數(shù)列不符合題意.

           當(dāng)

           若

           若.

           綜上,共有3個(gè)滿足條件的無(wú)窮等差數(shù)列:

           ①{an} : an=0,即0,0,0,…;

           ②{an} : an=1,即1,1,1,…;

           ③{an} : an=2n-1,即1,3,5,…,

    (21)本小題主要考查直線、橢圓和向量等基本知識(shí),以及推理能力和運(yùn)算能力.滿分12分.

           解:(I)設(shè)所求橢圓方程是

           由已知,得    所以.

           故所求的橢圓方程是

           (II)設(shè)Q(),直線

           當(dāng)由定比分點(diǎn)坐標(biāo)公式,得

          

           .

           于是   故直線l的斜率是0,.

    (22)本小題主要考查函數(shù)、不等式等基本知識(shí),以及綜合運(yùn)用數(shù)學(xué)知識(shí)解決問題的能力.滿分14分.

           證明:(I)任取 

           和  ②

           可知 ,

           從而 .  假設(shè)有①式知

          

           ∴不存在

           (II)由                        ③

           可知   ④

           由①式,得   ⑤

           由和②式知,   ⑥

           由⑤、⑥代入④式,得

                              

    (III)由③式可知

      (用②式)

           (用①式)


    同步練習(xí)冊(cè)答案