[方法二] 設(shè)AA1到對面BB1CC1的距離為d,由5(2)知V=d,d= 查看更多

 

題目列表(包括答案和解析)

(必做題)先閱讀:如圖,設(shè)梯形ABCD的上、下底邊的長分別是a,b(a<b),高為h,求梯形的面積.
方法一:延長DA、CB交于點O,過點O作CD的垂線分別交AB、CD于E、F,則EF=h.
設(shè)OE=x,∵△OAB∽△ODC,∴
x
x+h
=
a
b
,即x=
ah
b-a

∴S梯形ABCD=S△ODC-S△OAB=
1
2
b(x+h)-
1
2
ax=
1
2
(b-a)x+
1
2
bh=
1
2
(a+b)h.
方法二:作AB的平行線MN分別交AD、BC于MN,過點A作BC的平行線AQ分別于MN、DC于PQ,則△AMP∽△ADQ.
設(shè)梯形AMNB的高為x,MN=y,
x
h
=
y-a
b-a
⇒y=a+
b-a
h
x,∴S梯形ABCD=
h
0
(a+
b-a
h
x)dx=(ax+
b-a
2h
x2
|
h
0
=ah+
b-a
2h
•h2=
1
2
(a+b)h.
再解下面的問題:
已知四棱臺ABCD-A′B′C′D′的上、下底面的面積分別是S1,S2(S1<S2),棱臺的高為h,類比以上兩種方法,分別求出棱臺的體積(棱錐的體積=
1
3
×底面積×高).

查看答案和解析>>

設(shè)橢圓的左、右頂點分別為,點在橢圓上且異于兩點,為坐標(biāo)原點.

(Ⅰ)若直線的斜率之積為,求橢圓的離心率;

(Ⅱ)若,證明直線的斜率 滿足

【解析】(1)解:設(shè)點P的坐標(biāo)為.由題意,有  ①

,得,

,可得,代入①并整理得

由于,故.于是,所以橢圓的離心率

(2)證明:(方法一)

依題意,直線OP的方程為,設(shè)點P的坐標(biāo)為.

由條件得消去并整理得  ②

,

.

整理得.而,于是,代入②,

整理得

,故,因此.

所以.

(方法二)

依題意,直線OP的方程為,設(shè)點P的坐標(biāo)為.

由P在橢圓上,有

因為,,所以,即   ③

,,得整理得.

于是,代入③,

整理得

解得,

所以.

 

查看答案和解析>>

已知是等差數(shù)列,其前n項和為Sn是等比數(shù)列,且.

(Ⅰ)求數(shù)列的通項公式;

(Ⅱ)記,證明).

【解析】(1)設(shè)等差數(shù)列的公差為d,等比數(shù)列的公比為q.

,得,,.

由條件,得方程組,解得

所以,.

(2)證明:(方法一)

由(1)得

     ①

   ②

由②-①得

,

(方法二:數(shù)學(xué)歸納法)

①  當(dāng)n=1時,,,故等式成立.

②  假設(shè)當(dāng)n=k時等式成立,即,則當(dāng)n=k+1時,有:

   

   

,因此n=k+1時等式也成立

由①和②,可知對任意成立.

 

查看答案和解析>>

已知遞增等差數(shù)列滿足:,且成等比數(shù)列.

(1)求數(shù)列的通項公式;

(2)若不等式對任意恒成立,試猜想出實數(shù)的最小值,并證明.

【解析】本試題主要考查了數(shù)列的通項公式的運用以及數(shù)列求和的運用。第一問中,利用設(shè)數(shù)列公差為,

由題意可知,即,解得d,得到通項公式,第二問中,不等式等價于,利用當(dāng)時,;當(dāng)時,;而,所以猜想,的最小值為然后加以證明即可。

解:(1)設(shè)數(shù)列公差為,由題意可知,即

解得(舍去).      …………3分

所以,.        …………6分

(2)不等式等價于

當(dāng)時,;當(dāng)時,

,所以猜想,的最小值為.     …………8分

下證不等式對任意恒成立.

方法一:數(shù)學(xué)歸納法.

當(dāng)時,,成立.

假設(shè)當(dāng)時,不等式成立,

當(dāng)時,, …………10分

只要證  ,只要證  ,

只要證  ,只要證  ,

只要證  ,顯然成立.所以,對任意,不等式恒成立.…14分

方法二:單調(diào)性證明.

要證 

只要證  ,  

設(shè)數(shù)列的通項公式,        …………10分

,    …………12分

所以對,都有,可知數(shù)列為單調(diào)遞減數(shù)列.

,所以恒成立,

的最小值為

 

查看答案和解析>>

在正方體ABCD-A1B1C1D1中,E、F分別是BB1、CD的中點.
(1)證明:BC⊥AE 
(2)求AE與D1F所成的角; 
(3)設(shè)AA1=1,求點F到平面DBB1D1的距離.

查看答案和解析>>


同步練習(xí)冊答案