更一般的.如果一個(gè)函數(shù)y=f(x)關(guān)于直線x=a與點(diǎn)(a,0)對(duì)稱.函數(shù)式子有什么特征呢?引入標(biāo)題――函數(shù)圖象的對(duì)稱性從圖象觀察.一個(gè)關(guān)于直線x=a對(duì)稱的函數(shù)y=f(x),它應(yīng)該滿足什么特征? 查看更多

 

題目列表(包括答案和解析)

已知a,b∈R,可以證明:
(1)
1
2
a2+
1
2
b2≥(
1
2
a+
1
2
b)2
(2)
1
3
a2+
2
3
b2≥(
1
3
a+
2
3
b)2;
(3)
1
4
a2+
3
4
b2≥(
1
4
a+
3
4
b)2;

根據(jù)上述不等式,寫(xiě)出一個(gè)更一般的結(jié)論,并加以證明.

查看答案和解析>>

(2011•浦東新區(qū)三模)某同學(xué)將命題“在等差數(shù)列{an}中,若p+m=2n,則有ap+am=2an(p,m,n∈N*)”改寫(xiě)成:“在等差數(shù)列{an}中,若1×p+1×m=2×n,則有1×ap+1×am=2×an(p,m,n∈N*)”,進(jìn)而猜想:“在等差數(shù)列{an}中,若2p+3m=5n,則有2ap+3am=5an(p,m,n∈N*).”
(1)請(qǐng)你判斷以上同學(xué)的猜想是否正確,并說(shuō)明理由;
(2)請(qǐng)你提出一個(gè)更一般的命題,使得上面這位同學(xué)猜想的命題是你所提出命題的特例,并給予證明.
(3)請(qǐng)類比(2)中所提出的命題,對(duì)于等比數(shù)列{bn},請(qǐng)你寫(xiě)出相應(yīng)的命題,并給予證明.

查看答案和解析>>

已知函數(shù)f(x)=
a
a2-1
(ax-a-x),a>1

(1)用a表示f(2),f(3),并化簡(jiǎn);
(2)比較
f(2)
2
f(1)
1
,
f(3)
3
f(2)
2
的大小,并由此歸納出一個(gè)更一般的結(jié)論.(不要求寫(xiě)出證明過(guò)程).

查看答案和解析>>

(2001•上海)已知兩個(gè)圓:x2+y2=1 ①;x2+(y-3)2=1 ②,則由①式減去②式可得上述兩個(gè)圓的對(duì)稱軸方程.將上述命題在曲線仍為圓的情況下加以推廣,即要求得到一個(gè)更一般的命題,而已知命題應(yīng)成為所推廣命題的一個(gè)特例,推廣的命題為
設(shè)圓方程(x-a)2+(y-b)2=r2 ①(x-c)2+(y-d)2=r2 ②(a≠c或b≠d),
由①-②,得兩圓的對(duì)稱軸方程
設(shè)圓方程(x-a)2+(y-b)2=r2 ①(x-c)2+(y-d)2=r2 ②(a≠c或b≠d),
由①-②,得兩圓的對(duì)稱軸方程

查看答案和解析>>

在平面直角坐標(biāo)系中,已知焦距為4的橢圓C:
x2
a2
+
y2
b2
=1  (a>b>0)
的左、右頂點(diǎn)分別為A、B,橢圓C的右焦點(diǎn)為F,過(guò)F作一條垂直于x軸的直線與橢圓相交于R、S,若線段RS的長(zhǎng)為
10
3

(1)求橢圓C的方程;
(2)設(shè)Q(t,m)是直線x=9上的點(diǎn),直線QA、QB與橢圓C分別交于點(diǎn)M、N,求證:直線MN
必過(guò)x軸上的一定點(diǎn),并求出此定點(diǎn)的坐標(biāo);
(3)實(shí)際上,第(2)小題的結(jié)論可以推廣到任意的橢圓、雙曲線以及拋物線,請(qǐng)你對(duì)拋物線y2=2px(p>0)寫(xiě)出一個(gè)更一般的結(jié)論,并加以證明.

查看答案和解析>>


同步練習(xí)冊(cè)答案