說明3.通過相關(guān)點法.可以將難求的線轉(zhuǎn)化為點來求 練習(xí)1:在上例中.若y=f(x)為偶函數(shù).這樣的函數(shù)確定嗎? 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)f(x)=|x+
1x
|

(1)判斷函數(shù)f(x)的奇偶性;
(2)求證:函數(shù)f(x)在(0,1)上是單調(diào)減函數(shù),在[1,+∞)上是單調(diào)增函數(shù);
(3)用描點法畫出函數(shù)f(x)的圖象;根據(jù)圖象寫出函數(shù)f(x)的單調(diào)區(qū)間及值域.

查看答案和解析>>

已知函數(shù)數(shù)學(xué)公式
(1)判斷函數(shù)f(x)的奇偶性;
(2)求證:函數(shù)f(x)在(0,1)上是單調(diào)減函數(shù),在[1,+∞)上是單調(diào)增函數(shù);
(3)用描點法畫出函數(shù)f(x)的圖象;根據(jù)圖象寫出函數(shù)f(x)的單調(diào)區(qū)間及值域.

查看答案和解析>>

(2013•海淀區(qū)一模)設(shè)A(xA,yA),B(xB,yB)為平面直角坐標(biāo)系上的兩點,其中xA,yA,BxB,yB∈Z.令△x=xB-xA,△y=yB-yA,若|△x|+|△y=3,且|△x|-|△y|≠0,則稱點B為點A的“相關(guān)點”,記作:B=i(A).
(Ⅰ)請問:點(0,0)的“相關(guān)點”有幾個?判斷這些點是否在同一個圓上,若在,寫出圓的方程;若不在,說明理由;
(Ⅱ)已知點H(9,3),L(5,3),若點M滿足M=i(H),L=i(M),求點M的坐標(biāo);
(Ⅲ)已知P0(x0,y0)(x0∈Z,Y0∈Z)為一個定點,點列{Pi}滿足:Pi=i(Pi-1),其中i=1,2,3,…,n,求|P0Pn|的最小值.

查看答案和解析>>

(2013•海淀區(qū)一模)設(shè)A(xA,yA),B=(xB,yB)為平面直角坐標(biāo)系上的兩點,其中xA,yA,xB,yB∈Z.令△x=xB-xA,△y=yB-yA,若|△x|+|△y|=3,且|△x|•|△y|≠0,則稱點B為點A的“相關(guān)點”,記作:B=τ(A).已知P0(x0,y0)(x0,y0∈Z)為平面上一個定點,平面上點列{Pi}滿足:Pi=τ(Pi-1),且點Pi的坐標(biāo)為(xi,yi),其中i=1,2,3,…n.
(Ⅰ)請問:點P0的“相關(guān)點”有幾個?判斷這些“相關(guān)點”是否在同一個圓上,若在同一個圓上,寫出圓的方程;若不在同一個圓上,說明理由;
(Ⅱ)求證:若P0與Pn重合,n一定為偶數(shù);
(Ⅲ)若p0(1,0),且yn=100,記T=
ni=0
xi
,求T的最大值.

查看答案和解析>>

下列四個命題:
(1)隨機誤差e是衡量預(yù)報精確度的一個量,它滿足E(e)=0
(2)殘差平方和越小的模型,擬合的效果越好;
(3)用相關(guān)指數(shù)R2來刻畫回歸的效果時,R2的值越小,說明模型擬合的效果越好;
(4)直線y=bx+a和各點(x1,y1),(x2,y2),…,(xn,yn)的偏差
n
i=1
[yi-(bxi+a)]
2是該坐標(biāo)平面上所有直線與這些點的偏差中最小的直線.
其中真命題的個數(shù)(  )

查看答案和解析>>


同步練習(xí)冊答案