證明:f(x)= ax2+bx+c有一個(gè)比d大一個(gè)比d小的零點(diǎn),設(shè)為x1,x2(x1-d)(x2-d)=x1x2-d(x1+x2)+d2=+d+d2<0ac+abd+ad2<0af(d)<0 查看更多

 

題目列表(包括答案和解析)

已知向量
a
=(1,0),
b
=(x,1)
,當(dāng)x>0時(shí),定義函數(shù)f(x)=
a
b
|
a
|+|
b
|

(1)求函數(shù)y=f(x)的反函數(shù)y=f-1(x);
(2)數(shù)列{an}滿足:a1=a>0,an+1=f(an),n∈N*,Sn為數(shù)列{an}的前n項(xiàng)和,
①證明:Sn<2a;
②當(dāng)a=1時(shí),證明:an
1
2n

查看答案和解析>>

對(duì)于函數(shù)f(x)=a-
22x+1
(a∈R)

(Ⅰ) 是否存在實(shí)數(shù)a使函數(shù)f(x)為奇函數(shù)?
(Ⅱ) 探究函數(shù)f(x)的單調(diào)性(不用證明),并求出函數(shù)f(x)的值域.

查看答案和解析>>

對(duì)于函數(shù)f(x)=a+
22x+1
(x∈R)
,
(1)用定義證明:f(x)在R上是單調(diào)減函數(shù);
(2)若f(x)是奇函數(shù),求a值;
(3)在(2)的條件下,解不等式f(2t+1)+f(t-5)≤0.

查看答案和解析>>

已知y=f(x)=xlnx.
(1)求函數(shù)y=f(x)的圖象在x=e處的切線方程;
(2)設(shè)實(shí)數(shù)a>0,求函數(shù)F(x)=
f(x)
a
在[a,2a]上的最大值.
(3)證明對(duì)一切x∈(0,+∞),都有lnx>
1
ex
-
2
ex
成立.

查看答案和解析>>

已知函數(shù)f(x)=
a•3x+a-23x+1
.(a∈R)
(1)是否存在實(shí)數(shù)a使函數(shù)f(x)為奇函數(shù)?證明你的結(jié)論;
(2)用單調(diào)性定義證明:不論a取任何實(shí)數(shù),函數(shù)f(x)在其定義域上都是增函數(shù);
(3)若函數(shù)f(x)為奇函數(shù),解不等式f(3m2-m+1)+f(2m-3)<0.

查看答案和解析>>


同步練習(xí)冊(cè)答案