題目列表(包括答案和解析)
(本小題滿分10分)
在平面直角坐標系xOy中,已知點,P是動點,且三角形POA的三邊所在直線的斜
率滿足kOP+kOA=kPA.
(1)求點P的軌跡C的方程;
(2)若Q是軌跡C上異于點P的一個點,且,直線OP與QA交于點M,問:是否存在點P使得△PQA和△PAM的面積滿足?若存在,求出點P的坐標;若不存在,說明理由.
(本小題滿分10分)已知三條直線l1:,l2:,:,它們圍成.
(I)求證:不論取何值時,中總有一個頂點為定點;
(II)當m取何值時,的面積取最大值、最小值?并求出最值.
(本小題滿分14分)
已知在直四棱柱ABCD-A1B1C1D1中,底面ABCD為直角梯形,且滿足AD⊥AB,BC∥AD,AD=16,AB=8,BB1=8.E,F分別是線段A1A,BC上的點.
(1)若A1E=5,BF=10,求證:BE∥平面A1FD.
(2)若BD⊥A1F,求三棱錐A1-AB1F的體積.
本小題滿分14分)
如圖,已知三棱錐P—ABC中,PA⊥平面ABC,設AB、PB、PC的中點分別為D、E、F,
若過D、E、F的平面與AC交于點G.
(Ⅰ)求證點G是線段AC的中點;
(Ⅱ)判斷四邊形DEFG的形狀,并加以證明;
(Ⅲ)若PA=8,AB=8,BC=6,AC=10,求幾何體BC-DEFG的體積.
一.選擇題 : 本大題共10小題, 每小題5分, 共50分.
題號
1
2
3
4
5
6
7
8
9
10
答案
C
D
A
B
B
D
A
C
D
C
二.填空題:本大題有5小題, 每小題4分, 共20分.
11. 5 12.充分不必要 13. -1 14. 15.
三.解答題:本大題有5小題, 共50分. 解答應寫出文字說明, 證明過程或演算步驟.
16解: 因為,所以-2<m<2;……………………………………1分
若方程無實根,則, ……2分
即, 所以q:1<m<3. ……………………………………3分
因為┲p為假,則p為真,又因為p∧q為假,則q為假. ……………………5分
所以……………………7分
所以-2<m≤1.故實數的取值范圍為. ………………………………8分
17.解: (1) 由橢圓的定義知 c=6 ……1分
= ……3分
所以橢圓的標準方程為
……5分
(2)設雙曲線的方程為 ……8分
點P(5,2)代入上式得
所以雙曲線的標準方程為
……10分
18、解:(1)設小正方形邊長為x cm,
則V=(8-2x)?(5-2x)x=4x3-26x2+40x (0<x<) ……4分
V′=4(3x2-13x+10) (0<x<)
V′=0得x=1或(舍去) ……7分
,
根據實際情況,小盒容積最大是存在的,
∴當x=
19.解:(1)的導數. ---------2分
令,解得,或;
令,解得. ---------4分
從而的單調遞增區(qū)間為,;
單調遞減區(qū)間為. ---------5分
(2)由(1)知 , ---------8分
從而當時,函數取得最小值.
因為存在,使不等式成立,
故, 即 , ---------10分
20.解:(1)設拋物線方程為,
AB的方程為,
聯(lián)立消整理,得; -------2分
∴又依題有,∴, -------4分
∴拋物線方程為; ---------5分
(2)設,,,∵,
∴的方程為;
∵過,∴,同理 -------8分
∴為方程的兩個根;∴;
又,∴的方程為 -------11分
∴,顯然直線過點 --------12分
命題學校:瑞安四中(65531798) 命題人:葉海靜(13868821241)
審核學校:洞頭一中 (63480535) 審核人:陳后萬(13858823246)
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com