題目列表(包括答案和解析)
a+b |
2 |
b+c |
2 |
a+c |
2 |
若 ( )
A. B. C. D.
若
A. B. C. D.
設(shè)A.B.C是半徑為1的圓上三點,若,則的最大值為( )
A. B. C. D.
若=( )
A. B. C. D.
一.選擇題 : 本大題共10小題, 每小題5分, 共50分.
題號
1
2
3
4
5
6
7
8
9
10
答案
C
D
A
B
B
D
A
C
D
C
二.填空題:本大題有5小題, 每小題4分, 共20分.
11. 5 12.充分不必要 13. -1 14. 15.
三.解答題:本大題有5小題, 共50分. 解答應(yīng)寫出文字說明, 證明過程或演算步驟.
16解: 因為,所以-2<m<2;……………………………………1分
若方程無實根,則, ……2分
即, 所以q:1<m<3. ……………………………………3分
因為┲p為假,則p為真,又因為p∧q為假,則q為假. ……………………5分
所以……………………7分
所以-2<m≤1.故實數(shù)的取值范圍為. ………………………………8分
17.解: (1) 由橢圓的定義知 c=6 ……1分
= ……3分
所以橢圓的標(biāo)準(zhǔn)方程為
……5分
(2)設(shè)雙曲線的方程為 ……8分
點P(5,2)代入上式得
所以雙曲線的標(biāo)準(zhǔn)方程為
……10分
18、解:(1)設(shè)小正方形邊長為x cm,
則V=(8-2x)?(5-2x)x=4x3-26x2+40x (0<x<) ……4分
V′=4(3x2-13x+10) (0<x<)
V′=0得x=1或(舍去) ……7分
,
根據(jù)實際情況,小盒容積最大是存在的,
∴當(dāng)x=
19.解:(1)的導(dǎo)數(shù). ---------2分
令,解得,或;
令,解得. ---------4分
從而的單調(diào)遞增區(qū)間為,;
單調(diào)遞減區(qū)間為. ---------5分
(2)由(1)知 , ---------8分
從而當(dāng)時,函數(shù)取得最小值.
因為存在,使不等式成立,
故, 即 , ---------10分
20.解:(1)設(shè)拋物線方程為,
AB的方程為,
聯(lián)立消整理,得; -------2分
∴又依題有,∴, -------4分
∴拋物線方程為; ---------5分
(2)設(shè),,,∵,
∴的方程為;
∵過,∴,同理 -------8分
∴為方程的兩個根;∴;
又,∴的方程為 -------11分
∴,顯然直線過點 --------12分
命題學(xué)校:瑞安四中(65531798) 命題人:葉海靜(13868821241)
審核學(xué)校:洞頭一中 (63480535) 審核人:陳后萬(13858823246)
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com