(2)當(dāng)時(shí).函數(shù)的圖象上是否存在兩點(diǎn)A.B使此兩點(diǎn)處的切線互相垂直?證明你的結(jié)論, 查看更多

 

題目列表(包括答案和解析)

 

    已知函數(shù)的圖象在點(diǎn)處的切線方程為

   (Ⅰ)求實(shí)數(shù)的值;

   (Ⅱ)設(shè)是[2,+∞)上的增函數(shù)。

        (i)求實(shí)數(shù)的最大值;

        (ii)當(dāng)取最大值時(shí),是否存在點(diǎn)Q,使得過(guò)點(diǎn)Q的直線若能與曲線圍成兩個(gè)封閉圖形,則這兩個(gè)封閉圖形的面積總相等?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,說(shuō)明理由。

 

 

 

查看答案和解析>>

已知函數(shù)數(shù)學(xué)公式的圖象在點(diǎn)P(0,f(0))處的切線方程為y=3x-2.
(1)求實(shí)數(shù)a,b的值;
(2)設(shè)數(shù)學(xué)公式是[2,+∞)上的增函數(shù).
①求實(shí)數(shù)m的最大值;
②當(dāng)m取最大值時(shí),是否存在點(diǎn)Q,使得過(guò)點(diǎn)Q的直線若能與曲線y=g(x)圍成兩個(gè)封閉圖形,則這兩個(gè)封閉圖形的面積總相等?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

已知函數(shù)

(1)求的定義域;

(2)在函數(shù)的圖象上是否存在不同的兩點(diǎn),使得過(guò)這兩點(diǎn)的直線平行于x軸;

(3)當(dāng)a、b滿足什么條件時(shí),上恒取正值。

查看答案和解析>>

本題12分)
已知函數(shù).
(1)求的定義域;
(2)在函數(shù)的圖象上是否存在不同的兩點(diǎn),使得過(guò)這兩點(diǎn)的直線平行于x軸;
(3)當(dāng),b滿足什么條件時(shí),上恒取正值.

查看答案和解析>>

已知函數(shù)f(x)=數(shù)學(xué)公式
(1)當(dāng)數(shù)學(xué)公式時(shí),求f(x)的最大值;
(2)設(shè)g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點(diǎn)的連線的斜率,否存在實(shí)數(shù)a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

題號(hào)

1

2

3

4

5

6

7

8

9

10

11

12

答案

A

B

D

A

A

B

B

D

C

B

B

C

13.    9     14.         15.               16.           

17.解:(1)

        (4分)

的最小正周期為                                              (5分)

的最小值為-2                                              (6分)

(2)的遞增區(qū)間為                                (10分)

18.(1)證明:過(guò)D作DHAE于H,

平面ADE平面ABCE

DH平面ABCE    DHBE

中,由題設(shè)條件可得:AB=2,AE=BE=    AEBE

BE平面ADE                                                 (6分)

(2)由(1)知,BE平面ADE,為BD和平面ADE所成的角,且BEDE

在矩形ABCD中,AB=2,AD=1,E為CD的中點(diǎn)

DE=1,BE=

中,

故BD和平面ADE所成角的正切值為                         (12分)

19.(1)記“3粒種子,至少有1粒未發(fā)芽”為事件

由題意,種3粒種子,相當(dāng)于作3次獨(dú)立重復(fù)試驗(yàn),

                                  (4分)

(2)記“3粒A種子,至少有2粒未發(fā)芽”為事件,“3粒B種子,全部發(fā)芽”為事件,則     (6分)

由于相互獨(dú)立,故     (8分)

(3)                   (12分)

20.解:(1)的圖像關(guān)于原點(diǎn)對(duì)稱,為奇函數(shù)

                                          (4分)

(2)假設(shè)存在兩點(diǎn)滿足題設(shè)條件

    

而兩切線垂直,則應(yīng)有,矛盾,

故不存在滿足題設(shè)條件的兩點(diǎn)A,B                                 (8分)

(3)時(shí),,為減函數(shù)

時(shí)

                               (12分)

21.解:(1)

兩式相減得:

時(shí),

是首項(xiàng)為,公比為的等比數(shù)列

                                          (4分)

(2)

為以-1為公差的等差數(shù)列,                    (7分)

(3)

以上各式相加得:

當(dāng)時(shí),

當(dāng)時(shí),上式也成立,                          (12分)

22.(1)依拋物線定義知,點(diǎn)P的軌跡C,為N,F(xiàn)為焦點(diǎn),直線為準(zhǔn)線的拋物線

曲線C的方程為.                                           (4分)

(2)①設(shè)M、N的方程為帶入并整理得

      

設(shè)MN的中點(diǎn)為

MN的垂直平分線方程為

點(diǎn)B的坐標(biāo)為

的范圍是                         (8分)

②易得弦長(zhǎng)

為直角三角形,則為等腰直角三角形,

點(diǎn)B的坐標(biāo)為(0,10)

 

 

 


同步練習(xí)冊(cè)答案