當時.由.得或(舍) 查看更多

 

題目列表(包括答案和解析)

已知遞增等差數(shù)列滿足:,且成等比數(shù)列.

(1)求數(shù)列的通項公式;

(2)若不等式對任意恒成立,試猜想出實數(shù)的最小值,并證明.

【解析】本試題主要考查了數(shù)列的通項公式的運用以及數(shù)列求和的運用。第一問中,利用設數(shù)列公差為,

由題意可知,即,解得d,得到通項公式,第二問中,不等式等價于,利用當時,;當時,;而,所以猜想,的最小值為然后加以證明即可。

解:(1)設數(shù)列公差為,由題意可知,即,

解得(舍去).      …………3分

所以,.        …………6分

(2)不等式等價于,

時,;當時,;

,所以猜想,的最小值為.     …………8分

下證不等式對任意恒成立.

方法一:數(shù)學歸納法.

時,,成立.

假設當時,不等式成立,

時,, …………10分

只要證  ,只要證  ,

只要證  ,只要證  ,

只要證  ,顯然成立.所以,對任意,不等式恒成立.…14分

方法二:單調性證明.

要證 

只要證  ,  

設數(shù)列的通項公式,        …………10分

,    …………12分

所以對,都有,可知數(shù)列為單調遞減數(shù)列.

,所以恒成立,

的最小值為

 

查看答案和解析>>

已知二次函數(shù)的二次項系數(shù)為,且不等式的解集為,

(1)若方程有兩個相等的根,求的解析式;

(2)若的最大值為正數(shù),求的取值范圍.

【解析】第一問中利用∵f(x)+2x>0的解集為(1,3),

設出二次函數(shù)的解析式,然后利用判別式得到a的值。

第二問中,

解:(1)∵f(x)+2x>0的解集為(1,3),

   ①

由方程

              ②

∵方程②有兩個相等的根,

,

即5a2-4a-1=0,解得a=1(舍) 或 a=-1/5

a=-1/5代入①得:

(2)由

 

 解得:

故當f(x)的最大值為正數(shù)時,實數(shù)a的取值范圍是

 

查看答案和解析>>


同步練習冊答案