(2)設.求當最大時的值. 查看更多

 

題目列表(包括答案和解析)

,,其中m是不等于零的常數(shù),
(1)(理)寫出h(4x)的定義域;
(文)m=1時,直接寫出h(x)的值域;
(2)(文、理)求h(x)的單調(diào)遞增區(qū)間;
(3)已知函數(shù)f(x)(x∈[a,b]),定義:f1(x)=minf(t)|a≤t≤x(x∈[a,b]),f2(x)=maxf(t)|a≤t≤x(x∈[a,b]).其中,minf(x)|x∈D表示函數(shù)f(x)在D上的最小值,maxf(x)|x∈D表示函數(shù)f(x)在D上的最大值.例如:f(x)=cosx,x∈[0,π],則f1(x)=cosx,x∈[0,π],f2(x)=1,x∈[0,π].
(理)當m=1時,設,不等式t≤M1(x)-M2(x)≤n恒成立,求t,n的取值范圍;
(文)當m=1時,|h1(x)-h2(x)|≤n恒成立,求n的取值范圍.

查看答案和解析>>

,, 其中是不等于零的常數(shù),

(1)、(理)寫出的定義域(2分);

(文)時,直接寫出的值域(4分)

(2)、(文、理)求的單調(diào)遞增區(qū)間(理5分,文8分);

(3)、已知函數(shù),定義:,.其中,表示函數(shù)上的最小值,

表示函數(shù)上的最大值.例如:,則 ,    ,

(理)當時,設,不等式

恒成立,求的取值范圍(11分);

(文)當時,恒成立,求的取值范圍(8分);

 

查看答案和解析>>

,, 其中是不等于零的常數(shù),
(1)、(理)寫出的定義域(2分);
(文)時,直接寫出的值域(4分)
(2)、(文、理)求的單調(diào)遞增區(qū)間(理5分,文8分);
(3)、已知函數(shù),定義:,.其中,表示函數(shù)上的最小值,
表示函數(shù)上的最大值.例如:,,則 ,   ,
(理)當時,設,不等式
恒成立,求的取值范圍(11分);
(文)當時,恒成立,求的取值范圍(8分);

查看答案和解析>>

數(shù)學公式,數(shù)學公式,其中m是不等于零的常數(shù),
(1)(理)寫出h(4x)的定義域;
(文)m=1時,直接寫出h(x)的值域;
(2)(文、理)求h(x)的單調(diào)遞增區(qū)間;
(3)已知函數(shù)f(x)(x∈[a,b]),定義:f1(x)=minf(t)|a≤t≤x(x∈[a,b]),f2(x)=maxf(t)|a≤t≤x(x∈[a,b]).其中,minf(x)|x∈D表示函數(shù)f(x)在D上的最小值,maxf(x)|x∈D表示函數(shù)f(x)在D上的最大值.例如:f(x)=cosx,x∈[0,π],則f1(x)=cosx,x∈[0,π],f2(x)=1,x∈[0,π].
(理)當m=1時,設數(shù)學公式,不等式t≤M1(x)-M2(x)≤n恒成立,求t,n的取值范圍;
(文)當m=1時,|h1(x)-h2(x)|≤n恒成立,求n的取值范圍.

查看答案和解析>>

,g(x)=x3-x2-3.
(1)當a=2時,求曲線y=f(x)在x=1處的切線方程;
(2)如果存在x1,x2∈[0,2],使得g(x1)-g(x2)≥M成立,求滿足上述條件的最大整數(shù)M;
(3)如果對任意的,都有f(s)≥g(t)成立,求實數(shù)a的取值范圍.

查看答案和解析>>

一、選擇題(本大題共12小題,每小題5分,共60分)

1~5  D A B D C    6~10  C A B D B     11~12  C A

二、填空題(本大題共4小題,每小題4分,共16分)

13.;     14.21 ;       15. ;      16..

三、解答題(本大題共6小題,共74分)

17.(本題滿分13分)

解:(1)甲、乙兩衛(wèi)星各自預報一次,記“甲預報準確”為事件A,“乙預報準確”為事件B.則兩衛(wèi)星只有一顆衛(wèi)星預報準確的概率為:

 … 4分

             = 0.8×(1 - 0.75) + (1 - 08)×0.75 = 0.35   …………6分

答:甲、乙兩衛(wèi)星中只有一顆衛(wèi)星預報準確的概率為0.35  ………7分

(2) 甲獨立預報3次,至少有2次預報準確的概率為

         …………10分

    ==0.896             ………………………12分

答:甲獨立預報3次,至少有2次預報準確的概率為0.896. ……… 13分

18.(本題滿分13分)

解:(1)∵         …………………2分

         =  ……………6分

      ∴函數(shù)的最小正周期        …………………7分

       又由可得:

的單調(diào)遞增區(qū)間形如:  ……9分

(2) ∵時,

 ∴的取值范圍是              ………………11分

∴函數(shù)的最大值是3,最小值是0 

從而函數(shù)的是               …………13分

19.(本題滿分12分)

解:(1) ∵   ∴由已知條件可得:,并且,

解之得:,                         ……………3分

   從而其首項和公比滿足:  ………5分

   故數(shù)列的通項公式為: ……6分

(2) ∵  

     數(shù)列是等差數(shù)列,         …………………………8分

       =

       ==   …………………10分

    由于,當且僅當最大時,最大.

        所以當最大時,或6        …………………………12分

20.(本題滿分12分)

解:(1) ∵為奇函數(shù)    ∴  ………2分

   ∵,導函數(shù)的最小值為-12 ∴……3分

 又∵直線的斜率為,

并且的圖象在點P處的切線與它垂直

,即    ∴       ……………6分

(2) 由第(1)小題結(jié)果可得:

                ……………9分

   令,得           ……………10分

   ∵,,

   ∴[-1, 3]的最大值為11,最小值為-16.  ………12分

21.(本題滿分12分)

解:(1) ∵函數(shù)有意義的充要條件為

         ,即是  

 ∴函數(shù)的定義域為         …………3分

∵函數(shù)有意義的充要條件為:

∴函數(shù)的定義域為     …………5分

(2)∵由題目條件知

,                      …………………7分

c的取值范圍是:[-5, 5]           …………………8分

(3) 即是

    ∵是奇函數(shù),∴   ………………9分

又∵函數(shù)的定義域為,并且是增函數(shù)

    ………………11分

解之得的取值范圍是:=  …………12分

22.(本題滿分12分)

解:(1) 設雙曲線的漸近線方程為,即,

∵雙曲線的漸近線與已知的圓相切,圓心到漸近線的距離等于半徑

 ∴    

 ∴雙曲線的漸近線的方程為:         ……………2分

又設雙曲線的方程為:,則

 ∵雙曲線的漸近線的方程為,且有一個焦點為

,          ………………4分

解之得:,故雙曲線的方程是:  ……………5分

(2) 聯(lián)立方程組,消去得:(*)…………6分

  ∵直線與雙曲線C的左支交于兩點,方程(*)兩根、為負數(shù),

   …………8分

又∵線段PQ的中點坐標滿足

   ,   ……9分

∴直線的方程為:,

即是,

直線軸的截距     ……………………11分

又∵時,的取值范圍是:

∴直線的截距的取值范圍是……12分

 

 

 

 


同步練習冊答案