8.如圖.正三棱柱的各棱長都2.E.F分別是的中點.則EF的長是 查看更多

 

題目列表(包括答案和解析)

如圖,正三棱柱的各棱長都2,E,F分別是的中點,則EF的長是

(A)2     (B)      (C)        (D)

查看答案和解析>>

如圖,正三棱柱的各棱長都2,
E,F分別是的中點,則EF的長是(     )

A.2B.C.D.

查看答案和解析>>

如圖,正三棱柱的各棱長都2,

E,F分別是的中點,則EF的長是 (      )

(A)2     (B)      (C)        (D)

 

查看答案和解析>>

如圖,正三棱柱的各棱長都2,
E,F分別是的中點,則EF的長是(     )
A.2B.C.D.

查看答案和解析>>

如圖,正三棱柱的各棱長都2,E,F分別是的中點,則EF的長是
A.2B.C.D.

查看答案和解析>>

一、選擇題:BCCAC  ABCBC

二、填空題:

11.                 12. 0.94                 13.            14. ②③④

三、解答題:

15解:(1)在二項式中展開式的通項

    

依題意  12-3r=0,   r=4.          ……………………5分

常數項是第5項.                   ……… ……………7分

(2)第r項的系數為

  ∴  ∴   ……10分

∴ 的取值范圍 .          ……14分

16.解:(1)抽出的產品中正品件數不少于次品件數的

可能情況有                        ----------2分

從這7件產品中一次性隨機抽出3件的所有可能有----------4分

      抽出的產品中正品件數不少于次品件數的概率為       ----------7分

1

2

3

 

P

(2)

         

----10分

                  -------14分

17解: (1)記“甲投籃1次投進”為事件A1,“乙投籃1次投進”為事件A2,“丙投籃1次投進”為事件A3,“3人都沒有投進”為事件A.則 P(A1)= ,P(A2)= ,P(A3)= ,

∴ P(A) = P()=P()?P()?P()

= [1-P(A1)] ?[1-P (A2)] ?[1-P (A3)]=(1-)(1-)(1-)=          ---------6分

∴3人都沒有投進的概率為 .                                       --------7分

(2)解法一: 隨機變量ξ的可能值有0,1,2,3), ξ~ B(3, ), ---------9分

P(ξ=k)=C3k()k()3k  (k=0,1,2,3)         ---------11分

 Eξ=np = 3× = .      ---------14分

ξ

0

1

2

3

P

解法二: ξ的概率分布為: 

 

 

 

Eξ=0×+1×+2×+3×=   .

18.解:(1)作AD的中點O,則VO⊥底面ABCD.建立如圖空間直角坐標系,并設正方形邊長為1,則A(,0,0),B(,1,0),C(-,1,0),D(-,0,0),V(0,0,)                                    ……3分

…4分

……5分

……6分

又AB∩AV=A  ∴AB⊥平面VAD…………………7分

(2)由(Ⅰ)得是面VAD的法向量,設是面VDB的法向量,則

……10分

,…………………………………12分

又由題意知,面VAD與面VDB所成的二面角,所以其大小為………14分

19.解:(1),,

猜測:

……(6分)

(2)用數學歸納法證明如下:

    ① 當時,,,等式成立;……(8分)

 、 假設當時等式成立,即,

成立,……(9分)

那么當時,

    ,

時等式也成立.……(13分)

由①,②可得,對一切正整數都成立.……(14分)

20.解:(1)     ……(3分)

(2)M到達(0,n+2)有兩種情況……(5分)

……(8分)

(3)數列為公比的等比數列

……(14分)

 


同步練習冊答案