(Ⅱ)設(shè) 若{b n­}的前n項和是S n.且 查看更多

 

題目列表(包括答案和解析)

(12分)已知函數(shù)若數(shù)列{a n}滿足: 成等差數(shù)列.

(Ⅰ)求{a n}的通項a n ;

(Ⅱ)設(shè) 若{b}的前n項和是S n,且

查看答案和解析>>

(2012•鷹潭一模)設(shè)數(shù)列{an}滿足條件:a1=8,a2=0,a3=-7,且數(shù)列{an+1-an}(n∈N*)是等差數(shù)列.
(1)設(shè)cn=an+1-an,求數(shù)列{cn}的通項公式;
(2)若
b
 
n
=2ncn
,求Sn=b1+b2+…+bn
(3)數(shù)列{an}的最小項是第幾項?并求出該項的值.

查看答案和解析>>

設(shè)ξ~B(n,p),若有Eξ=12,Dξ=4,則n,p的值為 (    )

A.18和      B.16和           C.20和        D.15和

查看答案和解析>>

設(shè)B(n,P),若有,,則n,P之值分別為

A.15和                   B.16和                   C.20和                   D.18和   

查看答案和解析>>

(2009•成都模擬)已知集合A={-1,0,1,2,3,2
2
+1},集合B={1,2,3,4,5,9},映射f:A→B的對應(yīng)法則為f:x→y=x2-2x+2,設(shè)集合M={m∈B|m在集合A中存在原象},集合N={n∈B|n在集合A中不存在原象},若從集合M、N中各取一個元素組成沒有重復(fù)數(shù)字的兩位數(shù)的個數(shù)(  )

查看答案和解析>>

一.選擇題

題號

10

11

12

答案

C

C

A

D

C

B

A

D

D

A

二.13.      14.      15.     16.(萬元)

三.17.(I) 由

代入 得:     

整理得:                  (5分)

(II)由 

        由余弦定理得:

       -----------------------------   (9分)

  

       ------   (12分)

18.(Ⅰ)  的分布列.   

   2

   3

   4

   5

    6

p

 

 

                                - --------- ------   (4分)

(Ⅱ)設(shè)擲出的兩枚骰子的點數(shù)同是為事件

     同擲出1的概率,同擲出2的概率,同擲出3的概率

所以,擲出的兩枚骰子的點數(shù)相同的概率為P= 。ǎ阜郑

(Ⅲ)

時)

 

 。

  3

  4

  5 

 。

 

   3

   6

    6

   6

    6

 p

   

 

 

 

 

時)

 

 。

  3

  4

  5 

 。

 

   2

   5

    8

   8

    8

 p

   

 

 

 

 

時)

 

 。

  3

  4

  5 

  6

 

   1

   4

    7

  10

    10

 p

   

 

 

 

 

時, 最大為                             (12分)

19.(Ⅰ)

   

    兩兩相互垂直, 連結(jié)并延長交于F.

   

 

    同理可得

  

  

  

          ------------  (6分)

(Ⅱ)的重心

    F是SB的中點

  

  

   梯形的高

        ---     (12分)

       【注】可以用空間向量的方法

20.設(shè)2,f (a1),  f (a2),  f (a3), …,f (an),  2n+4的公差為d,則2n+4=2+(n+2-1)d   d=2,

 

……………………(4分)

   (2),

 

       --------------------              (8分)

 

21.(Ⅰ)∵直線的斜率為1,拋物線的焦點 

    ∴直線的方程為

   由

  設(shè)

  則

  又

       

  故 夾角的余弦值為    -----------------  。ǎ斗郑

(Ⅱ)由

  即得:

  由 

從而得直線的方程為

 ∴軸上截距為

  ∵的減函數(shù)

∴  從而得

軸上截距的范圍是  ------------ (12分)

22.(Ⅰ) 

    在直線上,

                ??????????????     。ǎ捶郑

(Ⅱ)

 上是增函數(shù),上恒成立

 所以得         ??????????????? 。ǎ阜郑

(Ⅲ)的定義域是,

①當(dāng)時,上單增,且,無解;

、诋(dāng)時,上是增函數(shù),且,

有唯一解;

③當(dāng)時,

那么在單減,在單增,

    時,無解;

     時,有唯一解 

     時,

     那么在上,有唯一解

而在上,設(shè)

  

即得在上,有唯一解.

綜合①②③得:時,有唯一解;

        時,無解;

       時,有且只有二解.

 

               ??????????????    。ǎ保捶郑

 


同步練習(xí)冊答案