(Ⅰ)求證:是△的面積), 查看更多

 

題目列表(包括答案和解析)

()選修4-1:幾何證明講

已知 ABC   中,AB=AC,  DABC外接圓劣弧上的點(不與點A,C重合),延長BD至E。

(1)       求證:AD的延長線平分CDE;

(2)       若BAC=30,ABC中BC邊上的高為2+,求ABC外接圓的面積。

查看答案和解析>>

(2013•江門一模)如圖,AB是圓O的直徑,C是圓O上除A、B外的一點,△AED在平面ABC的投影恰好是△ABC.已知CD=BE,AB=4,tan∠EAB=
14

(1)證明:平面ADE⊥平面ACD;
(2)當三棱錐C-ADE體積最大時,求三棱錐C-ADE的高.

查看答案和解析>>

精英家教網P是平面ABCD外的點,四邊形ABCD是平行四邊形,
AB
=(2,-1,-4),
AD
=(4,2,0),
AP
=(-1,2,-1).
(1)求證:PA⊥平面ABCD;
(2)對于向量
a
=(x1,y1z1),
b
=(x2y2z2),
c
=(x3y3z3)
,定義一種運算:(
a
×
b
)•
c
=x1y2z3+x2y3z1+x3y1z2-x1y3z2-x2z3-x3y2z1
,試計算(
AB
×
AD
)-
AP
的絕對值;說明其與幾何體P-ABCD的體積關系,并由此猜想向量這種運算(
AB
×
AD
)-
AP
的絕對值的幾何意義.

查看答案和解析>>

P是平面ABCD外的點,四邊形ABCD是平行四邊形,數學公式=(2,-1,-4),數學公式=(4,2,0),數學公式=(-1,2,-1).
(1)求證:PA⊥平面ABCD;
(2)對于向量數學公式=(x1,y1z1),數學公式,定義一種運算:數學公式,試計算數學公式的絕對值;說明其與幾何體P-ABCD的體積關系,并由此猜想向量這種運算數學公式的絕對值的幾何意義.

查看答案和解析>>

P是平面ABCD外的點,四邊形ABCD是平行四邊形,=(2,-1,-4),=(4,2,0),=(-1,2,-1).
(1)求證:PA⊥平面ABCD;
(2)對于向量=(x1,y1z1),,定義一種運算:,試計算的絕對值;說明其與幾何體P-ABCD的體積關系,并由此猜想向量這種運算的絕對值的幾何意義.

查看答案和解析>>

一.選擇題

題號

10

11

12

答案

C

C

A

D

C

B

A

D

D

A

二.13.      14.      15.     16.(萬元)

三.17.(I) 由

代入 得:     

整理得:                  (5分)

(II)由 

        由余弦定理得:

       -----------------------------   (9分)

  

       ------   (12分)

18.(Ⅰ)  的分布列.   

   2

   3

   4

   5

    6

p

 

 

                                - --------- ------   (4分)

(Ⅱ)設擲出的兩枚骰子的點數同是為事件

     同擲出1的概率,同擲出2的概率,同擲出3的概率

所以,擲出的兩枚骰子的點數相同的概率為P=  (8分)

(Ⅲ)

時)

 

 。

  3

  4

  5 

  6

 

   3

   6

    6

   6

    6

 p

   

 

 

 

 

時)

 

 。

  3

  4

  5 

  6

 

   2

   5

    8

   8

    8

 p

   

 

 

 

 

時)

 

 。

  3

  4

  5 

 。

 

   1

   4

    7

  10

    10

 p

   

 

 

 

 

時, 最大為                             (12分)

19.(Ⅰ)

   

    兩兩相互垂直, 連結并延長交于F.

   

 

    同理可得

  

  

  

          ------------  (6分)

(Ⅱ)的重心

    F是SB的中點

  

  

   梯形的高

        ---     (12分)

       【注】可以用空間向量的方法

20.設2,f (a1),  f (a2),  f (a3), …,f (an),  2n+4的公差為d,則2n+4=2+(n+2-1)d   d=2,

 

……………………(4分)

   (2),

 

       --------------------              (8分)

 

21.(Ⅰ)∵直線的斜率為1,拋物線的焦點 

    ∴直線的方程為

   由

  設

  則

  又

       

  故 夾角的余弦值為    -----------------  。ǎ斗郑

(Ⅱ)由

  即得:

  由 

從而得直線的方程為

 ∴軸上截距為

  ∵的減函數

∴  從而得

軸上截距的范圍是  ------------ (12分)

22.(Ⅰ) 

    在直線上,

                ??????????????      (4分)

(Ⅱ)

 上是增函數,上恒成立

 所以得         ??????????????? 。ǎ阜郑

(Ⅲ)的定義域是

①當時,上單增,且無解;

、诋時,上是增函數,且,

有唯一解;

③當時,

那么在單減,在單增,

    時,無解;

     時,有唯一解 ;

     時,

     那么在上,有唯一解

而在上,設

  

即得在上,有唯一解.

綜合①②③得:時,有唯一解;

        時,無解;

       時,有且只有二解.

 

               ??????????????    。ǎ保捶郑

 


同步練習冊答案