題目列表(包括答案和解析)
如圖,虛線部分是四個(gè)象限的角平分線,實(shí)線部分是函數(shù)
的部分圖象,則可能是( )
A. B.
C. D.
一.選擇題
題號
1
2
3
4
5
6
7
8
9
10
11
12
答案
B
C
B
C
A
D
C
B
A
D
D
A
二.13. 14. 15. 16.(萬元)
三.17.(I) 由
代入 得:
整理得: (5分)
(II)由
由余弦定理得:
∴
----------------------------- (9分)
又 ------ (12分)
18.(Ⅰ) 的分布列.
2
3
4
5
6
p
- --------- ------ (4分)
(Ⅱ)設(shè)擲出的兩枚骰子的點(diǎn)數(shù)同是為事件
同擲出1的概率,同擲出2的概率,同擲出3的概率
所以,擲出的兩枚骰子的點(diǎn)數(shù)相同的概率為P= 。ǎ阜郑
(Ⅲ)
時(shí))
。
3
4
5
。
3
6
6
6
6
p
=
時(shí))
。
3
4
5
。
2
5
8
8
8
p
=
時(shí))
2
3
4
5
。
1
4
7
10
10
p
=
時(shí), 最大為 (12分)
19.(Ⅰ)
兩兩相互垂直, 連結(jié)并延長交于F.
同理可得
------------ (6分)
(Ⅱ)是的重心
F是SB的中點(diǎn)
梯形的高
--- (12分)
【注】可以用空間向量的方法
20.設(shè)2,f (a1), f (a2), f (a3), …,f (an), 2n+4的公差為d,則2n+4=2+(n+2-1)d d=2,
……………………(4分)
(2),
-------------------- (8分)
21.(Ⅰ)∵直線的斜率為1,拋物線的焦點(diǎn)
∴直線的方程為
由
設(shè)
則
又
故 夾角的余弦值為 ----------------- 。ǎ斗郑
(Ⅱ)由
即得:
由
從而得直線的方程為
∴在軸上截距為或
∵是的減函數(shù)
∴ 從而得
故在軸上截距的范圍是 ------------ (12分)
22.(Ⅰ)
在直線上,
?????????????? (4分)
(Ⅱ)
在上是增函數(shù),在上恒成立
所以得 ??????????????? 。ǎ阜郑
(Ⅲ)的定義域是,
①當(dāng)時(shí),在上單增,且,無解;
、诋(dāng)時(shí),在上是增函數(shù),且,
有唯一解;
③當(dāng)時(shí),
那么在上單減,在上單增,
而
時(shí),無解;
時(shí),有唯一解 ;
時(shí),
那么在上,有唯一解
而在上,設(shè)
即得在上,有唯一解.
綜合①②③得:時(shí),有唯一解;
時(shí),無解;
時(shí),有且只有二解.
?????????????? (14分)
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com