2.過A作一條與兩坐標都不垂直的直線l交軌跡于P.Q兩點.在x軸上是否存在點N.使得NF恰好為PNQ的內(nèi)角評分線.若存在.求出點N的坐標.若不存在.請說明理由. 查看更多

 

題目列表(包括答案和解析)

過橢圓=1(a>b>0)的左焦點F任作一條與兩坐標軸都不垂直的弦AB,若點M在x軸上,且使得MF為△AMB的一條內(nèi)角平分線,則稱點M為該橢圓的“左特征點”,那么“左特征點”M一定是(    )

A.橢圓左準線與x軸的交點                     B.坐標原點

C.橢圓右準線與x軸的交點                     D.右焦點

查看答案和解析>>

過橢圓=1(a>b>0)的左焦點F任作一條與兩坐標軸都不垂直的弦AB,若點M在x軸上,且使得MF為△AMB的一條內(nèi)角平分線,則稱點M為該橢圓的“左特征點”,求橢圓+y2=1的“左特征點”M的坐標.

查看答案和解析>>

過橢圓=1(a>b>0)的左焦點F任作一條與兩坐標軸都不垂直的弦AB,若點M在x軸上,且使得MF為△AMB的一條內(nèi)角平分線,則稱點M為該橢圓的“左特征點”,求橢圓+y2=1的“左特征點”M的坐標.

查看答案和解析>>

(如圖)過橢圓數(shù)學(xué)公式=1(a>b>0)的左焦點F任作一條與兩坐標軸都不垂直的弦AB;若點M在x軸上,且使得MF為△AMB的一條內(nèi)角平分線,則稱點M為該橢圓的“左特征點”.
(1)求橢圓數(shù)學(xué)公式=1的“左特征點”M的坐標.
(2)試根據(jù)(1)中的結(jié)論猜測:橢圓數(shù)學(xué)公式=1(a>b>0)的“左特征點”M是一個怎么樣的點?并證明你的結(jié)論.

查看答案和解析>>

(如圖)過橢圓=1(a>b>0)的左焦點F任作一條與兩坐標軸都不垂直的弦AB;若點M在x軸上,且使得MF為△AMB的一條內(nèi)角平分線,則稱點M為該橢圓的“左特征點”.
(1)求橢圓=1的“左特征點”M的坐標.
(2)試根據(jù)(1)中的結(jié)論猜測:橢圓=1(a>b>0)的“左特征點”M是一個怎么樣的點?并證明你的結(jié)論.

查看答案和解析>>

17.本題滿分14分.已知函數(shù)。

(1)       求函數(shù)上的值域;

(2)       在中,若,求的值。

16

21.本小題滿分12分.

已知函數(shù)fx.=lnx-,

(I)        求函數(shù)fx.的單調(diào)增區(qū)間;

(II)     若函數(shù)fx.在[1,e]上的最小值為,求實數(shù)a的值。

3.已知,則的值為    .

A.-2          B.-1        C.1             D.2

19.解:1.∵,,

,

,

,

.

2.∵,,∴,

,∴,

,∴,

.

20.此題主要考查數(shù)列.等差.等比數(shù)列的概念.?dāng)?shù)列的遞推公式.?dāng)?shù)列前n項和的求法

  同時考查學(xué)生的分析問題與解決問題的能力,邏輯推理能力及運算能力.

解:I.

    

Ⅱ.

16.本題滿分14分.

解:1.連,四邊形菱形   ,

www.ks5u.com

  的中點,

               ,

                   

2.當(dāng)時,使得,連,交,則 的中點,又上中線,為正三角形的中心,令菱形的邊長為,則。

           

       

   即:   。

22.本小題滿分14分.

解:I.1.,

    。…………………………………………1分

    處取得極值,

    …………………………………………………2分

    即

    ………………………………………4分

   ii.在,

    由

          

           ,

    ;

    當(dāng);

    ;

    .……………………………………6分

    面

    ,

    且

    又

    ,

   

    ……………9分

   Ⅱ.當(dāng)

    ①;

    ②當(dāng)時,

    ,

   

    ③,

    從面得;

    綜上得,.………………………14分

 

 


同步練習(xí)冊答案