由2->,知<,n最小取8.答案 B第Ⅱ卷 查看更多

 

題目列表(包括答案和解析)

等比數(shù)列{an}的前n項和為Sn,已知對任意的n∈N*,點(n,Sn),均在函數(shù)y=bx+r(b>0且b≠1,b,r均為常數(shù))的圖象上.  
(1)求r的值;
(2)當b=2時,記bn=
n+1
4an
(n∈N*),求數(shù)列{bn} 的前n項和Tn
(3)由(2),是否存在最小的整數(shù)m,使得對于任意的n∈N*,均有3-2Tn
m
20
,若存在,求出m的值,若不存在,說明理由.

查看答案和解析>>

設數(shù)列{an}是公差為d的等差數(shù)列,其前n項和為Sn.已知a1=1,d=2,
①求當n∈N*時,
Sn+64
n
的最小值;
②證明:由①知Sn=n2,當n∈N*時,
2
s1s3
+
3
s2s4
…+
n+1
SnSn+2
5
16

查看答案和解析>>

已知集合N={1,2,3,4,…,n},A為非空集合,且A⊆N,定義A的“交替和”如下:將集合A中的元素按由大到小排列,然后從最大的數(shù)開始,交替地減、加后續(xù)的數(shù),直到最后一個數(shù),并規(guī)定單元素集合的交替和為該元素.例如集合{1,2,5,7,8}的交替和為8-7+5-2+1=5,集合{4}的交替和為4,當n=2時,集合N={1,2}的非空子集為{1},{2},{1,2},記三個集合的交替和的總和為S2=1+2+(2-1)=4,則n=3時,集合N={1,2,3}的所有非空子集的交替和的總和S3=
12
12
;集合N={1,2,3,4,…,n}的所有非空子集的交替和的總和Sn=
n•2n-1
n•2n-1

查看答案和解析>>

甲船自A港口出發(fā)時,乙船在離A港口7 n mile的海面上由D處駛向該港.已知兩船的航向成60°角,甲、乙兩船航速之比為2∶1,求兩船最靠近時,各離A港口多遠?

查看答案和解析>>

已知函數(shù)的最小值為0,其中

(Ⅰ)求的值;

(Ⅱ)若對任意的成立,求實數(shù)的最小值;

(Ⅲ)證明).

【解析】(1)解: 的定義域為

,得

當x變化時,,的變化情況如下表:

x

-

0

+

極小值

因此,處取得最小值,故由題意,所以

(2)解:當時,取,有,故時不合題意.當時,令,即

,得

①當時,,上恒成立。因此上單調(diào)遞減.從而對于任意的,總有,即上恒成立,故符合題意.

②當時,,對于,,故上單調(diào)遞增.因此當取時,,即不成立.

不合題意.

綜上,k的最小值為.

(3)證明:當n=1時,不等式左邊==右邊,所以不等式成立.

時,

                      

                      

在(2)中取,得

從而

所以有

     

     

     

     

      

綜上,,

 

查看答案和解析>>


同步練習冊答案