題目列表(包括答案和解析)
用數學歸納法證明1+2+22+…+2n-1=2n-1(n∈N*)的過程中,第二步假設當n=k(k∈N*)時等式成立,則當n=k+1時應得到( )
(1×22-2×32)+(3×42-4×52)+…+[(2n-1)(2n)2-2n(2n+1)2]=-n(n+1)(4n+3)(n∈N*).
(1×22-2×32)+(3×42-4×52)+…+[(2n-1)(2n)2-2n(2n+1)2]=-n(n+1)(4n+3)(n∈N*).
用數學歸納法證明" (1·22-2·32)+(3·42-4·52)+…+[(2n-1)·(2n)2-2n·(2n+1)2]=-n(n+1)(4n+3),n∈N*"的第一步是: 當n=1時,
∵左邊=_______, 右邊=______ (填計算結果)
∴左邊=右邊, 等式成立.
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com