20.已知函數. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)已知函數

(1)若,試確定函數的單調區(qū)間;(2)若,且對于任意恒成立,試確定實數的取值范圍;(3)設函數,求證:

查看答案和解析>>

(本小題滿分12分)已知函數

(Ⅰ)求函數的最小正周期及最值;

(Ⅱ)令,判斷函數的奇偶性,并說明理由.

查看答案和解析>>

(本小題滿分12分)已知函數.(1)若函數在區(qū)間(其中)上存在極值,求實數a的取值范圍;(2)如果當時,不等式恒成立,求實數k的取值范圍.

查看答案和解析>>

(本小題滿分12分)已知函數

(Ⅰ)求函數的周期和最大值;(Ⅱ)已知,求的值.

查看答案和解析>>

(本小題滿分12分)已知函數

(Ⅰ)求函數的定義域;

(Ⅱ)判斷并證明函數的奇偶性.

查看答案和解析>>

一、選擇題:

   1.D  2.A  3.B  4.B   5.A  6.C  7.D   8.C   9.B  10.B  11.C  12.B

  • <div id="f1nl2"><dd id="f1nl2"></dd></div>
  • <thead id="f1nl2"></thead>

      2,4,6

      13.    14.7   15.2    16.

      17.17.解:(1)  --------------------2分

       --------------------4分

      --------------------6分

      .--------------------8分

      時(9分),取最大值.--------------------10分

      (2)當時,,即,--------------------11分

      解得,.-------------------- 12分

      18.解法一 “有放回摸兩次,顏色不同”指“先白再黑”或“先黑再白”,記“有放回摸球兩次,兩球恰好顏色不同”為事件A,

      ∵“兩球恰好顏色不同”共2×4+4×2=16種可能,

      解法二  “有放回摸取”可看作獨立重復實驗∵每次摸出一球得白球的概率為

      ∴“有放回摸兩次,顏色不同”的概率為

      (2)設摸得白球的個數為,依題意得

      19.方法一

       

         (2)

      20.解:(1)

        ∵ x≥1. ∴ ,-----------------------------------------------------2分

         (當x=1時,取最小值).

        ∴ a<3(a=3時也符合題意). ∴ a≤3.------------------------------------4分

       。2),即27-6a+3=0, ∴ a=5,.------------6分

      ,或 (舍去) --------------------------8分

      時,; 當時,

        即當時,有極小值.又    ---------10分

         ∴ fx)在上的最小值是,最大值是. ----------12分

      21.解:(Ⅰ)∵,∴,

      ∵數列{}的各項均為正數,∴,

      ),所以數列{}是以2為公比的等比數列.………………3分

      的等差中項,

      ,

      ,∴,

      ∴數列{}的通項公式.……………………………………………………6分

         (Ⅱ)由(Ⅰ)及=得,, ……………………………8分

      ,

            1

         ②

      ②-1得,

      =……………………………10分

      要使S>50成立,只需2n+1-2>50成立,即2n+1>52,n³5

      ∴使S>50成立的正整數n的最小值為5. ……………………………12分

      22.解:(Ⅰ)由已知得

       

                    …………4分

        (Ⅱ)設P點坐標為(x,y)(x>0),由

              

                             …………5分    

               ∴   消去m,n可得

                   ,又因     8分 

              ∴ P點的軌跡方程為  

              它表示以坐標原點為中心,焦點在軸上,且實軸長為2,焦距為4的雙曲線

      的右支             …………9分

      (Ⅲ)設直線l的方程為,將其代入C的方程得

              

              即                          

       易知(否則,直線l的斜率為,它與漸近線平行,不符合題意)

              又     

             設,則

             ∵  l與C的兩個交點軸的右側

                

             ∴ ,即     

      又由  同理可得       …………11分

              由

             

           ∴

         由

                 

        由

                 

      消去

      解之得: ,滿足                …………13分

      故所求直線l存在,其方程為:  …………14分

       

       


      同步練習冊答案