12345 查看更多

 

題目列表(包括答案和解析)

學(xué)生編號12345
數(shù)學(xué)分?jǐn)?shù)x7075808590
物理分?jǐn)?shù)y7377808886
某班一次期中考試之后,從全班同學(xué)中隨機(jī)抽出5位,這5位同學(xué)的數(shù)學(xué)、物理分?jǐn)?shù)見表:
(1)研究變量y與x的相關(guān)關(guān)系時(shí),計(jì)算得r≈0.94,這說明y與x的相關(guān)程度如何?
(2)求得y與x的線性回歸方程之后,該方程所表示的直線一定經(jīng)過哪個(gè)定點(diǎn).(寫出解答過程)

查看答案和解析>>

學(xué)生編號12345
數(shù)學(xué)分?jǐn)?shù)x7075808590
物理分?jǐn)?shù)y7377808886
某班一次期中考試之后,從全班同學(xué)中隨機(jī)抽出5位,這5位同學(xué)的數(shù)學(xué)、物理分?jǐn)?shù)見表:
(1)研究變量y與x的相關(guān)關(guān)系時(shí),計(jì)算得r≈0.94,這說明y與x的相關(guān)程度如何?
(2)求得y與x的線性回歸方程之后,該方程所表示的直線一定經(jīng)過哪個(gè)定點(diǎn).(寫出解答過程)

查看答案和解析>>

若ai,j表示n×n階矩陣
11111
2345?
358 ?
?????
nan,n
中第i行、第j列的元素,其中第1行的元素均為1,第1列的元素為1,2,3,…,n,且ai+1,j+1=ai+1,j+ai,j(i、j=1,2,3,…,n-1),則
lim
n→∞
a3,n
n2
=______.

查看答案和解析>>

(09年湖南十二校理)函數(shù)由下表定義

    1

2

3

4

5

    4

1

3

5

2

,則的值為           

查看答案和解析>>

(2013•普陀區(qū)二模)若ai,j表示n×n階矩陣
11111
2345?
358 ?
?????
nan,n
中第i行、第j列的元素,其中第1行的元素均為1,第1列的元素為1,2,3,…,n,且ai+1,j+1=ai+1,j+ai,j(i、j=1,2,3,…,n-1),則
lim
n→∞
a3,n
n2
=
1
2
1
2

查看答案和解析>>

一、選擇題:

   1.D  2.A  3.B  4.B   5.A  6.C  7.D   8.C   9.B  10.B  11.C  12.B

    1. <li id="w1t2h"></li>

      <label id="w1t2h"><legend id="w1t2h"></legend></label>

      2,4,6

      13.    14.7   15.2    16.

      17.17.解:(1)  --------------------2分

       --------------------4分

      --------------------6分

      .--------------------8分

      當(dāng)時(shí)(9分),取最大值.--------------------10分

      (2)當(dāng)時(shí),,即,--------------------11分

      解得,.-------------------- 12分

      18.解法一 “有放回摸兩次,顏色不同”指“先白再黑”或“先黑再白”,記“有放回摸球兩次,兩球恰好顏色不同”為事件A,

      ∵“兩球恰好顏色不同”共2×4+4×2=16種可能,

      解法二  “有放回摸取”可看作獨(dú)立重復(fù)實(shí)驗(yàn)∵每次摸出一球得白球的概率為

      ∴“有放回摸兩次,顏色不同”的概率為

      (2)設(shè)摸得白球的個(gè)數(shù)為,依題意得

      19.方法一

       

         (2)

      20.解:(1)

        ∵ x≥1. ∴ ,-----------------------------------------------------2分

         (當(dāng)x=1時(shí),取最小值).

        ∴ a<3(a=3時(shí)也符合題意). ∴ a≤3.------------------------------------4分

       。2),即27-6a+3=0, ∴ a=5,.------------6分

      ,或 (舍去) --------------------------8分

      當(dāng)時(shí),; 當(dāng)時(shí),

        即當(dāng)時(shí),有極小值.又    ---------10分

         ∴ fx)在,上的最小值是,最大值是. ----------12分

      21.解:(Ⅰ)∵,∴,

      ∵數(shù)列{}的各項(xiàng)均為正數(shù),∴,

      ,

      ),所以數(shù)列{}是以2為公比的等比數(shù)列.………………3分

      的等差中項(xiàng),

      ,

      ,∴

      ∴數(shù)列{}的通項(xiàng)公式.……………………………………………………6分

         (Ⅱ)由(Ⅰ)及=得,, ……………………………8分

            1

         ②

      ②-1得,

      =……………………………10分

      要使S>50成立,只需2n+1-2>50成立,即2n+1>52,n³5

      ∴使S>50成立的正整數(shù)n的最小值為5. ……………………………12分

      22.解:(Ⅰ)由已知得

       

                    …………4分

        (Ⅱ)設(shè)P點(diǎn)坐標(biāo)為(x,y)(x>0),由

              

                             …………5分    

               ∴   消去m,n可得

                   ,又因     8分 

              ∴ P點(diǎn)的軌跡方程為  

              它表示以坐標(biāo)原點(diǎn)為中心,焦點(diǎn)在軸上,且實(shí)軸長為2,焦距為4的雙曲線

      的右支             …………9分

      (Ⅲ)設(shè)直線l的方程為,將其代入C的方程得

              

              即                          

       易知(否則,直線l的斜率為,它與漸近線平行,不符合題意)

              又     

             設(shè),則

             ∵  l與C的兩個(gè)交點(diǎn)軸的右側(cè)

                

             ∴ ,即     

      又由  同理可得       …………11分

              由

             

           ∴

         由

                 

        由

                 

      消去

      解之得: ,滿足                …………13分

      故所求直線l存在,其方程為:  …………14分

       

       


      同步練習(xí)冊答案