6.設(shè)曲線在點(3.2)處的切線與直線垂直.則 查看更多

 

題目列表(包括答案和解析)

設(shè)曲線在點(3,2)處的切線與直線垂直,則a=(   )

   A.2             B.-2              C.-            D.

 

查看答案和解析>>

 設(shè)曲線在點(3,2)處的切線與直線垂直,則   

A.2                  B.                C.                   D.

 

查看答案和解析>>

設(shè)曲線在點(3,2)處的切線與直線垂直,則   

A.2                  B.                C.                   D.

 

查看答案和解析>>

設(shè)曲線在點(3,2)處的切線與直線ax+y+1=0垂直,則a=( )
A.2
B.
C.
D.-2

查看答案和解析>>

設(shè)曲線在點(3,2)處的切線與直線ax+y+1=0垂直,則a=( )
A.2
B.
C.
D.-2

查看答案和解析>>

 

一、選擇題

1―5BABAB  6―10DBABA  11―12CC

  • <code id="cwbax"><label id="cwbax"><noframes id="cwbax"></noframes></label></code>

    20081006

    13.      14.

    15.        16. f()<f(1)< f(

    三、解答題

    17.解:(Ⅰ),    

     

    =是奇函數(shù),,

       (Ⅱ)由(Ⅰ)得,

    從而上增函數(shù),

    上減函數(shù),

    所以時取得極大值,極大值為,時取得極小值,極小值為

    18.解:(Ⅰ)設(shè)A隊得分為2分的事件為,

    對陣隊員

    隊隊員勝

    隊隊員負(fù)

     

     

     

     

     

     

     

     

     

     

     

     

       

     

    0

    1

    2

    3

    的分布列為:                          

                                                              ………… 8分

    于是 , …………9分

    ,    ∴     ………… 11分

    由于, 故B隊比A隊實力較強.    …………12分

    19.解:(1)由   ∴……………2分

    由已知得,  

    .  從而.……………4分

       (2) 由(1)知,,

    值域為.…………6分

    ∴由已知得:  于是……………8分

    20.解:(Ⅰ),

    化為,    或 

    解得,原不等式的解集為

       (Ⅱ),

    ①當(dāng)時,在區(qū)間[]上單調(diào)遞增,從而  

    ②當(dāng)時,對稱軸的方程為,依題意得  解得

    綜合①②得

    21.解:(Ⅰ),

    =0 得

    解不等式,得

    解不等式,,

    從而的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是

       (Ⅱ)將兩邊取對數(shù)得,

    因為,從而

    由(Ⅰ)得當(dāng),

    要使對任意成立,當(dāng)且僅當(dāng),得

     

    22.(Ⅰ)解:是二次函數(shù),且的解集是

    *可設(shè)

    在區(qū)間上的最大值是

    由已知,得

       (Ⅱ)方程等價于方程

    設(shè),

    當(dāng)時,是減函數(shù);

    當(dāng)時,是增函數(shù).

    *方程在區(qū)間內(nèi)分別有惟一實數(shù)根,

    而在區(qū)間內(nèi)沒有實數(shù)根.

    所以存在惟一的自然數(shù),

    使得方程在區(qū)間內(nèi)有且只有兩個不同的實數(shù)根.

     

     

     

     

     

    www.ks5u.com

     

     

     


    同步練習(xí)冊答案