題目列表(包括答案和解析)
若函數的最小值為3,則實數的值為( )
A.5或8 | B.或5 | C.或 | D.或8 |
A.5或8 | B.或5 | C.或 | D.或8 |
若函數的最小值3,則實數的值為( )
A.5或8 | B.或5 | C.或 | D.或 |
A.5或8 | B.或5 | C.或 | D.或 |
1 |
m |
1 |
2 |
1 |
2 |
一、選擇題
題號
1
2
3
4
5
6
7
8
答案
A
C
B
D
A
B
A
B
1. A∵ ∴ 即, ,
∴ 故選A;
4. D.由奇函數可知,而,則,當時,;當時,,又在上為增函數,則奇函數在上為增函數,.
5 A 如圖知是斜邊為3 的等腰直角三角形,是直角邊為1等腰直角三角形,區(qū)域的面積
6. B ,而
所以,得
7. A
,即
8. B ,所以解集為,
又,因此選B。
二、填空題
9. (-,1). 10. . 11. 12. 13. .
14. .
9. ,,
∴點M的直角坐標為(-,1)。
10.
11. 聯立解方程組解得,
即兩曲線的交點為
12. . ∴,
13. .
14. .依題意得
所以,
三、解答題
15解:解法1:設矩形欄目的高為a cm,寬為b cm,則ab=9000. ①
廣告的高為a+20,寬為2b+25,其中a>0,b>0.
廣告的面積S=(a+20)(2b+25)
=2ab+40b+25a+500=18500+25a+40b
≥18500+2=18500+
當且僅當25a=40b時等號成立,此時b=,代入①式得a=120,從而b=75.
即當a=120,b=75時,S取得最小值24500.
故廣告的高為140 cm,寬為175 cm時,可使廣告的面積最小.
解法2:設廣告的高為寬分別為x cm,y cm,則每欄的高和寬分別為x-20,其中x>20,y>25
兩欄面積之和為2(x-20),由此得y=
廣告的面積S=xy=x()=x,
整理得S=
因為x-20>0,所以S≥2
當且僅當時等號成立,
此時有(x-20)2=14400(x>20),解得x=140,代入y=+25,得y=175,
即當x=140,y=175時,S取得最小值24500,
故當廣告的高為140 cm,寬為175 cm時,可使廣告的面積最小.
16. 證明:因為為正實數,由平均不等式可得
即
所以,
而
所以
17. 解:(Ⅰ)
圖像如下:
(Ⅱ)不等式,即,
由得.
由函數圖像可知,原不等式的解集為
18.解:函數的定義域為,且
19. (1)A
=
(2)
.
∴
20.解:對任意,,,,所以,對任意的,
,
,所以
0<
,令=,,
,所以.
反證法:設存在兩個使得,則
由,得,所以,矛盾,故結論成立。
,所以
+…
.
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com