題目列表(包括答案和解析)
(本小題12分)設(shè)函數(shù).
(1)求函數(shù)的最大值和最小正周期;
設(shè)A,B,C為的三個(gè)內(nèi)角,若且C為銳角,求.(意大利餡餅問(wèn)題)山姆的意大利餡餅屋中設(shè)有一個(gè)投鏢靶 該靶為正方形板.邊長(zhǎng)為18厘米,掛于前門附近的墻上,顧客花兩角伍分的硬幣便可投一鏢并可有機(jī)會(huì)贏得一種意大利餡餅中的一個(gè),投鏢靶中畫有三個(gè)同心圓,圓心在靶的中心,當(dāng)投鏢擊中半徑為1厘米的最內(nèi)層圓域時(shí).可得到一個(gè)大餡餅;當(dāng)擊中半徑為1厘米到2厘米之間的環(huán)域時(shí),可得到一個(gè)中餡餅;如果擊中半徑為2厘米到3厘米之間的環(huán)域時(shí),可得到一個(gè)小餡餅,如果擊中靶上的其他部分,則得不到諂餅,我們假設(shè)每一個(gè)顧客都能投鏢中靶,并假設(shè)每個(gè)圓的周邊線沒(méi)有寬度,即每個(gè)投鏢不會(huì)擊中線上,試求一顧客將嬴得:
(a)一張大餡餅,
(b)一張中餡餅,
(c)一張小餡餅,
(d)沒(méi)得到餡餅的概率
(本小題滿分12分)
有一塊邊長(zhǎng)為6m的正方形鋼板,將其四個(gè)角各截去一個(gè)邊長(zhǎng)為x的小正方形,然后焊接成一個(gè)無(wú)蓋的蓄水池。
(Ⅰ)寫出以x為自變量的容積V的函數(shù)解析式V(x),并求函數(shù)V(x)的定義域;
(Ⅱ)指出函數(shù)V(x)的單調(diào)區(qū)間;
(Ⅲ)蓄水池的底邊為多少時(shí),蓄水池的容積最大?最大容積是多少?
(本小題滿分12分) 已知向量,,.
(1)若求向量與的夾角;
(2)當(dāng)時(shí),求函數(shù)的最大值。
1.C 2.C 3.B 4.A 5.C 6.C 7.D 8.C 9.D 10.B
1l.B 12.A
2.解析:
,∴選C.
3.解析:是增函數(shù)
故,即
又
,故選B.
4.解析:如圖作出可行域,作直線,平移直線至位置,使其經(jīng)過(guò)點(diǎn).此時(shí)目標(biāo)函數(shù)取得最大值(注意與反號(hào))
由得
,故選A
5.解析:設(shè)有人投中為事件,則,
故選C.
6.解析:展開式中通項(xiàng);
由,得,故選C.
7.解析:
由得
,故選D.
8.略
9.解析:由得準(zhǔn)線方程,雙曲線準(zhǔn)線方程為
,解得,
,故選D.
10.解析:設(shè)正四面體的棱長(zhǎng)為2,取中點(diǎn)為,連接,則為與所成的角,在中
,故選B.
11.解析:
由題意,則,故選B.
12.解析:由已知,
為球的直么
,又,
設(shè),則
,
又由,解得
,故選A.
另法:將四面體置于正方休中.
正方體的對(duì)角線長(zhǎng)為球的直徑,由此得,然后可得.
二、填空題
13.3;解析:在上的投影是.
14.(0.2);解析:由,解得.
15.
解析:,
由余弦定理為鈍角
,即,
解得.
16.②③;
解析:容易知命題①是錯(cuò)的,命題②、③都是對(duì)的,對(duì)于命題④我們考查如圖所示的正方體,政棱長(zhǎng)為,顯然與為平面內(nèi)兩條距離為的平行直線,它們?cè)诘酌?sub>內(nèi)的射影、仍為兩條距離為的平行直線.但兩平面與卻是相交的.
三、
17.解:(1),
,
即,故.
(2)
由得.
設(shè)邊上的高為。則
.
18.(1)設(shè)甲、乙兩人同時(shí)參加災(zāi)區(qū)服務(wù)為事件,則.
(2)記甲、乙兩人同時(shí)參加同一災(zāi)區(qū)服務(wù)為事件,那么.
19.解:
(1)平面
∵二面角為直二面角,且,
平面 平面.
(2)(法一)連接交交于點(diǎn),連接是邊長(zhǎng)為2的正方形, ,
平面,由三垂線定理逆定理得
是二面角的平面角
由(1)平面,
.
在中,
∴在中,
故二面角等于.
(2)(法二)利用向量法,如圖以之中點(diǎn)為坐標(biāo)原點(diǎn)建立空間坐標(biāo)系,則
,
設(shè)平面的法向量分別為,則由
得,而平面的一個(gè)法向理
故所求二面角等于.
20.解:(1)由題設(shè),即
易知是首項(xiàng)為,公差為2的等差數(shù)列,
∴通項(xiàng)公式為,
(2)由題設(shè),,得是以公比為的等比數(shù)列.
由得.
21.解:(1)由題意,由拋物線定義可求得曲線的方程為.
(2)證明:設(shè)點(diǎn)、的坐標(biāo)分別為
若直線有斜率時(shí),其坐標(biāo)滿足下列方程組:
,
若沒(méi)有斜率時(shí),方程為.
又.
;又,
.
22.(1)解:方程可化為.
當(dāng)時(shí),,又,于是,解得,故.
(2)解:設(shè)為曲線上任一點(diǎn),由知曲線在點(diǎn)處的切線方程為,即.
令,得,從而得切線與直線的交點(diǎn)坐標(biāo)為
令,得,從而得切線與直線的交點(diǎn)坐標(biāo)為.所以點(diǎn)處的切線與直線所圍成的三角形面積為.故曲線上任一點(diǎn)處的切線與直線所圍成的三角形的面積為定值,此定值為6.
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com