答案 22 查看更多

 

題目列表(包括答案和解析)

已知橢圓E:
x2
a2
+
y2
b2
=1
(a>b>0)的離心率e=
2
2
,在橢圓E上存在A,B兩點關于直線l:y=x+1對稱.
(Ⅰ)現給出下列三個條件:①直線AB恰好經過橢圓E的一個焦點;②橢圓E的右焦點F到直線l的距離為2
2
;③橢圓E的左、右焦點到直線l的距離之比為
1
2

試從中選擇一個條件以確定橢圓E,并求出它的方程;(注:只需選擇一個方案答題,如果用多種方案答題,則按第一種方案給分)
(Ⅱ)若以AB為直徑的圓恰好經過橢圓E的上頂點S,求b的值.

查看答案和解析>>

已知橢圓E:
x2
a2
+
y2
b2
=1
(a>b>0)的離心率e=
2
2
,在橢圓E上存在A,B兩點關于直線l:y=x+1對稱.
(Ⅰ)現給出下列三個條件:①直線AB恰好經過橢圓E的一個焦點;②橢圓E的右焦點F到直線l的距離為2
2
;③橢圓E的左、右焦點到直線l的距離之比為
1
2

試從中選擇一個條件以確定橢圓E,并求出它的方程;(注:只需選擇一個方案答題,如果用多種方案答題,則按第一種方案給分)
(Ⅱ)若以AB為直徑的圓恰好經過橢圓E的上頂點S,求b的值.
精英家教網

查看答案和解析>>

有這樣一道題:“在△ABC中,已知a=
3
2cos2(
A+C
2
)=(
2
-1)cosB
,求角A.”已知該題的答案是A=60°,若橫線處的條件為三角形中某一邊的長度,則此條件應為
c=
6
+
2
2
c=
6
+
2
2

查看答案和解析>>

[選做題]在A、B、C、D四小題中只能選做2題,每小題10分,計20分.請把答案寫在答題紙的指定區(qū)域內.
A.(選修4-1:幾何證明選講)
過圓O外一點P分別作圓的切線和割線交圓于A,B,且PB=7,∠ABP=∠ABC,C是圓上一點使得BC=5,求線段AB的長.
B.(選修4-2:矩陣與變換)
求曲線C:xy=1在矩陣
2
2
-
2
2
2
2
2
2
對應的變換作用下得到的曲線C′的方程.
C.(選修4-4:坐標系與參數方程)
已知曲線C1
x=3cosθ
y=2sinθ
(θ為參數)和曲線C2:ρsin(θ-
π
4
)=
2

(1)將兩曲線方程分別化成普通方程;
(2)求兩曲線的交點坐標.
D.(選修4-5:不等式選講)
已知|x-a|<
c
4
,|y-b|<
c
6
,求證:|2x-3y-2a+3b|<c.

查看答案和解析>>

本題包括高考A,B,C,D四個選題中的B,C兩個小題,每小題10分,共20分.把答案寫在答題卡相應的位置上.解答時應寫出文字說明、證明過程或演算步驟.
B.選修4-2:矩陣與變換
已知矩陣A=
11
21
,向量
β
=
1
2
.求向量
α
,使得A2
α
=
β

C.選修4-4:極坐標與參數方程
在直角坐標系x0y中,直線l的參數方程為
x=
1
2
t
y=
2
2
+
3
2
t
(t為參數),若以直角坐標系xOy的O點為極點,Ox為極軸,且長度單位相同,建立極坐標系,得曲線C的極坐標方程為ρ=2cos(θ-
π
4
)

(1)求直線l的傾斜角;
(2)若直線l與曲線l交于A、B兩點,求AB.

查看答案和解析>>


同步練習冊答案