于是Eξ=0×+1×+2×=.答案 A 查看更多

 

題目列表(包括答案和解析)

如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.

(Ⅰ)證明PC⊥AD;

(Ⅱ)求二面角A-PC-D的正弦值;

(Ⅲ)設(shè)E為棱PA上的點,滿足異面直線BE與CD所成的角為30°,求AE的長.

 

【解析】解法一:如圖,以點A為原點建立空間直角坐標(biāo)系,依題意得A(0,0,0),D(2,0,0),C(0,1,0), ,P(0,0,2).

(1)證明:易得于是,所以

(2) ,設(shè)平面PCD的法向量,

,即.不防設(shè),可得.可取平面PAC的法向量于是從而.

所以二面角A-PC-D的正弦值為.

(3)設(shè)點E的坐標(biāo)為(0,0,h),其中,由此得.

,故 

所以,,解得,即.

解法二:(1)證明:由,可得,又由,,故.又,所以.

(2)如圖,作于點H,連接DH.由,,可得.

因此,從而為二面角A-PC-D的平面角.在中,,由此得由(1)知,故在中,

因此所以二面角的正弦值為.

(3)如圖,因為,故過點B作CD的平行線必與線段AD相交,設(shè)交點為F,連接BE,EF. 故或其補角為異面直線BE與CD所成的角.由于BF∥CD,故.在中,

中,由,,

可得.由余弦定理,,

所以.

 

查看答案和解析>>

某同學(xué)由于求不出積分
e
1
lnxdx
的準(zhǔn)確值,于是他采用“隨機模擬方法”和利用“積分的幾何意義”來近似計算積分
e
1
lnxdx
.他用計算機分別產(chǎn)生10個在[1,e]上的均勻隨機數(shù)xi(1≤i≤10)和10個在[0,1]上的均勻隨機數(shù)yi(1≤i≤10),其數(shù)據(jù)記錄為如下表的前兩行
x 2.50 1.01 1.90 1.22 2.52 2.17 1.89 1.96 1.36 2.22
y 0.84 0.25 0.98 0.15 0.01 0.60 0.59 0.88 0.84 0.10
lnx 0.92 0.01 0.64 0.20 0.92 0.77 0.64 0.67 0.31 0.80
則依此表格中的數(shù)據(jù),可得積分
e
1
lnxdx
的一個近似值為
3
5
(e-1)
3
5
(e-1)

查看答案和解析>>

我們把形如y=f(x)φ(x)的函數(shù)稱為冪指函數(shù),冪指函數(shù)在求導(dǎo)時,可以利用對數(shù)法:在函數(shù)解析式兩邊求對數(shù)得lny=φ(x)lnf(x),兩邊求導(dǎo)數(shù),得
y′
y
=φ′(x)lnf(x)+φ(x)
f′(x)
f(x)
,于是y′=f(x)φ(x)[φ′(x)lnf(x)+φ(x)
f′(x)
f(x)
]
,運用此方法可以探求得函數(shù)y=x
1
x
的一個單調(diào)遞增區(qū)間是( 。

查看答案和解析>>

某同學(xué)由于求不出積分的準(zhǔn)確值,于是他采用“隨機模擬方法”和利用“積分的幾何意義”來近似計算積分.他用計算機分別產(chǎn)生10個在[1,e]上的均勻隨機數(shù)xi(1≤i≤10)和10個在[0,1]上的均勻隨機數(shù)yi(1≤i≤10),其數(shù)據(jù)記錄為如下表的前兩行
x2.50 1.01 1.90 1.22 2.52 2.17 1.89 1.96 1.36 2.22
y0.84 0.25 0.98 0.15 0.01 0.60 0.59 0.88 0.84 0.10
lnx0.92 0.01 0.64 0.20 0.92 0.77 0.64 0.67 0.31 0.80
則依此表格中的數(shù)據(jù),可得積分的一個近似值為   

查看答案和解析>>

某同學(xué)由于求不出積分的準(zhǔn)確值,于是他采用“隨機模擬方法”和利用“積分的幾何意義”來近似計算積分.他用計算機分別產(chǎn)生10個在[1,e]上的均勻隨機數(shù)xi(1≤i≤10)和10個在[0,1]上的均勻隨機數(shù)yi(1≤i≤10),其數(shù)據(jù)記錄為如下表的前兩行
x2.50 1.01 1.90 1.22 2.52 2.17 1.89 1.96 1.36 2.22
y0.84 0.25 0.98 0.15 0.01 0.60 0.59 0.88 0.84 0.10
lnx0.92 0.01 0.64 0.20 0.92 0.77 0.64 0.67 0.31 0.80
則依此表格中的數(shù)據(jù),可得積分的一個近似值為   

查看答案和解析>>


同步練習(xí)冊答案