A.|x1-x2|< B.|x1-x2|< C.|x1-x2|< D.|x1-x2|> 查看更多

 

題目列表(包括答案和解析)

函數(shù)f(x)的定義域為A,若x1,x2∈A且f(x1)=f(x2)時總有x1=x2,則稱f(x)為單函數(shù).例如,函數(shù)f(x)=2x+1(x∈R)是單函數(shù).下列命題:
①函數(shù)f(x)=x2(x∈R)是單函數(shù);
②指數(shù)函數(shù)f(x)=2x(x∈R)是單函數(shù);
③若f(x)為單函數(shù),x1,x2∈A且x1≠x2,則f(x1)≠f(x2);
④在定義域上具有單調(diào)性的函數(shù)一定是單函數(shù).
⑤f(x)=|2x-1|是單函數(shù).
其中的真命題是(  )

查看答案和解析>>

6、用二分法求方程的近似根,精確度為e,則當型循環(huán)結(jié)構(gòu)的終止條件是( 。

查看答案和解析>>

16、函數(shù)f(x)的定義域為A,若x1,x2∈A且f(x1)=f(x2)時總有x1=x2,則稱f(x)為單函數(shù).例如,函數(shù)f(x)=2x+1(x∈R)是單函數(shù).下列命題:
①函數(shù)f(x)=x2(x∈R)是單函數(shù);
②若f(x)為單函數(shù),x1,x2∈A且x1≠x2,則f(x1)≠f(x2);
③若f:A→B為單函數(shù),則對于任意b∈B,它至多有一個原象;
④函數(shù)f(x)在某區(qū)間上具有單調(diào)性,則f(x)一定是單函數(shù).其中的真命題是
②③
.(寫出所有真命題的編號)

查看答案和解析>>

設(shè)函數(shù)f(x)=xsinx ,  x∈[ -
π
2
 , 
π
2
 ]
,若f(x1)>f(x2),則下列不等式必定成立的是(  )
A、x1+x2>0
B、x12>x22
C、x1>x2
D、x1<x2

查看答案和解析>>

用二分法求方程的近似根,精確度為e,則循環(huán)結(jié)構(gòu)的終止條件是( 。

查看答案和解析>>

福州八中2006級高中數(shù)學(xué)選修4-2模塊考試

 

一、選擇題    BDAC

二、填空題

<big id="eystr"><tr id="eystr"></tr></big>

20080925

三、解答題

7.解:(1)變換后的方程仍為直線,該變換是恒等變換.(3分)

(2)經(jīng)過變化后變?yōu)椋?2,5),它們關(guān)于y軸對稱,故該變換為關(guān)于y軸的反射變換.

(6分)

(3)所給方程是以原點為圓心,2為半徑的圓,設(shè)A(x,y)為曲線上的任意一點,經(jīng)過

變換后的點為A1(x1,y1),則

將之代入到可得方程,此方程表示橢圓,所給方程表示的是圓,

該變換是伸縮變換.(10分)

8.解:特征矩陣為.(1分)

特征多項式為,

0,解得矩陣A的特征值=0,,(2分)

0代入特征矩陣得,

以它為系數(shù)矩陣的二元一次方程組是

解之得可以為任何非零實數(shù),不妨取,于是,是矩陣A屬于

特征值的一個特征向量.

再將代入特征矩陣得

以它為系數(shù)矩陣的二元一次方程組是

解之得可以為任何非零實數(shù),不妨取,于是,是矩陣A的屬于特征值的一個特征向量.(6分)

解得 .(9分)

所以,A.(10分)

福州八中2006級高中數(shù)學(xué)選修4-5模塊考試

一、選擇題   BACD

二、填空題

5.      6.15

三、解答題

7.證法一:(作差比較法)∵=,又且a、b∈R+,

∴b>a>0.又x>y>0,∴bx>ay. ∴>0,即.

證法二:(分析法)

(分段函數(shù)3分,圖象3分,共6分)

(10分)

 

(10分)

第Ⅱ卷

一、選擇題  BCAD

二、填空題

5.    6.

三、解答題

7.解:(Ⅰ)由f(0)=,得2a-=,∴2a=,則a=.由

f()=,得+-=,∴b=1,2分  ∴f(x) =cos2x+sinxcosx -=cos2x+sin2x=sin(2x+).………4分

(Ⅱ)由f(x)=sin(2x+)又由+2kπ≤2x++2kπ,得+kπ≤x≤+kπ,

∴f(x)的單調(diào)遞增區(qū)間是[+kπ,+kπ](k∈Z).?…………8分

(Ⅲ)∵f(x)=sin2(x+),∴函數(shù)的圖象右移后對應(yīng)的函數(shù)可成為奇函數(shù).10分

  • 高三數(shù)學(xué)(理)第一次質(zhì)量檢查試卷 第3頁 共4頁                                              高三數(shù)學(xué)(理)第一次質(zhì)量檢查試卷 第4頁 共4頁

                                …………1分

    的等比中項為,   ……………2分

      ……………3分

                              ………………4分

    (2)          ………………5分

    是以為首項,1為公差的等差數(shù)列                         ………………6分

                                              ………………7分

    (3)由(2)知

    ………………9分

                   …………………10分

     

     

     

     


    同步練習(xí)冊答案
    <table id="eystr"><em id="eystr"><ul id="eystr"></ul></em></table><rp id="eystr"><em id="eystr"><div id="eystr"></div></em></rp>