題目列表(包括答案和解析)
函數(shù)的零點(diǎn)所在的大致區(qū)間是 ( )
A、(6 ,7 ) B、(7 ,8 ) C、(8 ,9 ) D、(9 ,10 )
函數(shù)的零點(diǎn)所在的大致區(qū)間是
A.(6,7) B.(7,8) C.(8,9) D.(9,10)
設(shè)函數(shù),則函數(shù)的零點(diǎn)的個(gè)數(shù)為( )
A.4 B.5 C.6 D.7
已知函數(shù)的零點(diǎn)個(gè)
數(shù)為( )
A.7 B.6 C.5 D.4
設(shè)函數(shù),則函數(shù)的零點(diǎn)的個(gè)數(shù)為( )
A.4 B. 5 C. 6 D. 7
一、選擇題(本大題共8小題,每小題5分,滿分40分.)
題號(hào)
1
2
3
4
5
6
7
8
選項(xiàng)
C
A
C
B
D
B
B
A
二、填空題(共7小題,計(jì)30分。其中第9、10、11、12小題必做;第13、14、15題選做兩題,若3題全做,按前兩題得分計(jì)算。)
9、 4 10、__10__(用數(shù)字作答).11、____。12、___0___。
13、 ;14、___8_____.15、 3 。
三、解答題(考生若有不同解法,請(qǐng)酌情給分。
16.解:(1)…………2分
……………………………………3分
………………………………………………5分
(2)…………………………7分
…………………………………9分
………………………………………10分
故
∴當(dāng)………………………………12分
17.解:⑴、記甲、乙兩人同時(shí)參加崗位服務(wù)為事件,那么,即甲、乙兩人同時(shí)參加崗位服務(wù)的概率是.……………………4分
⑵、記甲、乙兩人同時(shí)參加同一崗位服務(wù)為事件,
那么,…………………………………………………………6分
所以,甲、乙兩人不在同一崗位服務(wù)的概率是.………8分
⑶、隨機(jī)變量可能取的值為1,2.事件“”是指有兩人同時(shí)參加崗位服務(wù),則
.所以,
的分布列是:…………………………………………………………………… 10分
1
2
∴…………………………………………………………12分
18.
解:設(shè)2008年末汽車保有量為a1萬(wàn)輛,以后各年末汽車保有量依次為a2萬(wàn)輛,a3萬(wàn)輛,…,每年新增汽車x萬(wàn)輛!1分
a1=30,a2=a1×0.94+x,a3=a2×0.94+x=a1×0.942+x×0.94+x,…
故an=a1×0.94n-1+x(1+0.94+…+0.94n-2)
.………………………………………………6分
(1):當(dāng)x=3萬(wàn)輛時(shí),an≤30
則每年新增汽車數(shù)量控制在3萬(wàn)輛時(shí),汽車保有量能達(dá)到要求。……………9分
(2):如果要求汽車保有量不超過(guò)60萬(wàn)輛,即an≤60(n=1,2,3,…)
則,
即.
對(duì)于任意正整數(shù)n,
因此,如果要求汽車保有量不超過(guò)60萬(wàn)輛,x≤3.6(萬(wàn)輛).………………13分
答:若每年新增汽車數(shù)量控制在3萬(wàn)輛時(shí),汽車保有量能達(dá)到要求;每年新增汽車不應(yīng)超過(guò)3.6萬(wàn)輛,則汽車保有量定能達(dá)到要求!14分
19.解:(1)…………………………………………………………2分
由己知有實(shí)數(shù)解,∴,故…………………5分
(2)由題意是方程的一個(gè)根,設(shè)另一根為
則,∴……………………………………………………7分
∴,
當(dāng)時(shí),;當(dāng)時(shí),;
當(dāng)時(shí),
∴當(dāng)時(shí),有極大值,又,,
即當(dāng)時(shí),的量大值為 ………………………10分
∵對(duì)時(shí),恒成立,∴,
∴或………………………………………………………………13分
故的取值范圍是 ………………………………………14分
20.解:(1)作MP∥AB交BC于點(diǎn)P,NQ∥AB交BE于點(diǎn)Q,連結(jié)PQ,依題意可得MP∥NQ,且MP=NQ,即MNQP是平行四邊形,
∴MN=PQ.由已知,CM=BN=a,CB=AB=BE=1,
∴AC=BF=, .
即CP=BQ=.
∴MN=PQ=
(0<a<).…………………………………5分
(2)由(Ⅰ),MN=,所以,當(dāng)a=時(shí),MN=.
即M、N分別移動(dòng)到AC、BF的中點(diǎn)時(shí),MN的長(zhǎng)最小,最小值為.………8分
(3)取MN的中點(diǎn)G,連結(jié)AG、BG,∵AM=AN,BM=BN,G為MN的中點(diǎn)
∴AG⊥MN,BG⊥MN,∠AGB即為二面角α的平面角,………………………11分
又AG=BG=,所以,由余弦定理有cosα=.
故所求二面角的余弦值為-.………………………………………………………14分
(注:本題也可用空間向量,解答過(guò)程略)
21.解:⑴、對(duì)任意的正數(shù)均有且.
又
,…………………………………………………4分
又是定義在上的單增函數(shù),.
當(dāng)時(shí),,.,.
當(dāng)時(shí),,
.,
為等差數(shù)列,,. ……………………………6分
⑵、假設(shè)存在滿足條件,即
對(duì)一切恒成立.
令,
,………………………10分
故,………………………12分
,單調(diào)遞增,,.
.……………………………………………………………14分
(考生若有不同解法,請(qǐng)酌情給分。
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com