(文)已知數(shù)列對(duì)于任意的.滿足且. 查看更多

 

題目列表(包括答案和解析)

(文)已知數(shù)列{an}的前n項(xiàng)和為Sn,且對(duì)于任意n∈N*,總有Sn=2(an-1).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)在an與an+1之間插入n個(gè)數(shù),使這n+2個(gè)數(shù)組成等差數(shù)列,當(dāng)公差d滿足3<d<4時(shí),求n的值并求這個(gè)等差數(shù)列所有項(xiàng)的和T;
(3)記an=f(n),如果(n∈N*),問是否存在正實(shí)數(shù)m,使得數(shù)列{cn}是單調(diào)遞減數(shù)列?若存在,求出m的取值范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

(1)已知數(shù)列{an}的通項(xiàng)公式:an=
2•3n+2
3n-1
  (n∈N)
,試求{an}最大項(xiàng)的值;
(2)記bn=
an+p
an-2
,且滿足(1),若{ (bn)
1
3
 }
成等比數(shù)列,求p的值;
(3)(理)如果Cn+1=
Cn+p
Cn+1
, C1>-1 ,C1
2
,且p是滿足(2)的正常數(shù),試證:對(duì)于任意
自然數(shù)n,或者都滿足C2n-1
2
 , C2n
2
;或者都滿足C2n-1
2
 , C2n
2

(文)若{bn}是滿足(2)的數(shù)列,且{ (bn)
1
3
 }
成等比數(shù)列,試求滿足不等式:-b1+b2-b3+…+(-1)n•bn≥2004的自然數(shù)n的最小值.

查看答案和解析>>

(1)已知數(shù)列{an}的通項(xiàng)公式:數(shù)學(xué)公式,試求{an}最大項(xiàng)的值;
(2)記數(shù)學(xué)公式,且滿足(1),若數(shù)學(xué)公式成等比數(shù)列,求p的值;
(3)(理)如果數(shù)學(xué)公式,且p是滿足(2)的正常數(shù),試證:對(duì)于任意
自然數(shù)n,或者都滿足數(shù)學(xué)公式;或者都滿足數(shù)學(xué)公式
(文)若{bn}是滿足(2)的數(shù)列,且數(shù)學(xué)公式成等比數(shù)列,試求滿足不等式:-b1+b2-b3+…+(-1)n•bn≥2004的自然數(shù)n的最小值.

查看答案和解析>>

(1)已知數(shù)列{an}的通項(xiàng)公式:an=
2•3n+2
3n-1
  (n∈N)
,試求{an}最大項(xiàng)的值;
(2)記bn=
an+p
an-2
,且滿足(1),若{ (bn)
1
3
 }
成等比數(shù)列,求p的值;
(3)(理)如果Cn+1=
Cn+p
Cn+1
, C1>-1 ,C1
2
,且p是滿足(2)的正常數(shù),試證:對(duì)于任意
自然數(shù)n,或者都滿足C2n-1
2
 , C2n
2
;或者都滿足C2n-1
2
 , C2n
2

(文)若{bn}是滿足(2)的數(shù)列,且{ (bn)
1
3
 }
成等比數(shù)列,試求滿足不等式:-b1+b2-b3+…+(-1)n•bn≥2004的自然數(shù)n的最小值.

查看答案和解析>>

(1)已知數(shù)列{an}的通項(xiàng)公式:,試求{an}最大項(xiàng)的值;
(2)記,且滿足(1),若成等比數(shù)列,求p的值;
(3)(理)如果,且p是滿足(2)的正常數(shù),試證:對(duì)于任意
自然數(shù)n,或者都滿足;或者都滿足
(文)若{bn}是滿足(2)的數(shù)列,且成等比數(shù)列,試求滿足不等式:-b1+b2-b3+…+(-1)n•bn≥2004的自然數(shù)n的最小值.

查看答案和解析>>


同步練習(xí)冊(cè)答案