=[(yn+xn)-]2+ . 由(Ⅱ)知 0<yn+xn<1.∴- < yn+xn- < . ∴ < ()2+ = 查看更多

 

題目列表(包括答案和解析)

已知:x1,x2(x1<x2)是方程x2-6x+5=0的兩根,且yn=
xn+1
xn
,xn+2=(5+
1
yn
)xn+1
.n∈N*
(1)求y1,y2,y3的值;
(2)設(shè)zn=ynyn+1,求證:
n
i=1
zi≥26n

(3)求證:對(duì)?n∈[2,+∞)有|y2n-yn|<
1
625
1
26n-2

查看答案和解析>>

(2010•九江二模)在平面直角坐標(biāo)系中,定義
xn+1=yn-xn
yn+1=yn+xn
(n∈N)為點(diǎn)Pn(xn,yn)
到點(diǎn)Pn+1(xn+1,yn+1)的一個(gè)變換為“γ變換”,已知P1(0,1),P2(x2,y2),…,Pn(xn,yn),Pn+1(xn+1,yn+1)是經(jīng)過(guò)“γ變換”得到的一列點(diǎn).設(shè)an=|PnPn+1|,數(shù)列{an}的前n項(xiàng)和為Sn,那么S10的值為( 。

查看答案和解析>>

已知函數(shù)f(x)=
x
ax+b
(a、b為常數(shù)且a≠0)滿足f(2)=1且f(x)=x有唯一解.
(1)求f(x)的表達(dá)式;
(2)記xn=f(xn-1)(n∈N且n>1),且x1=f(1),求數(shù)列{xn}的通項(xiàng)公式.
(3)記 yn=xn•xn+1,數(shù)列{yn}的前n項(xiàng)和為Sn,求證Sn
4
3

查看答案和解析>>

已知在平面直角坐標(biāo)系中有一個(gè)點(diǎn)列:P1(0,1),P2(x2,y2),…Pn(xn,yn)(n∈N*).若點(diǎn)Pn(xn,yn)到點(diǎn)Pn+1(xn+1,yn+1)的變化關(guān)系為:
xn+1=yn-xn
yn+1=yn+xn
(n∈N*),則|P2013P2014|等于( 。
A、21004
B、21005
C、21006
D、21007

查看答案和解析>>

(2009•閔行區(qū)一模)在平面在直角坐標(biāo)系中,定義
xn+1=yn-xn
yn+1=yn+xn
(n∈N*)為點(diǎn)Pn(xn,yn)到點(diǎn)Pn+1(xn+1,yn+1)的一個(gè)變換,我們把它稱為點(diǎn)變換.已知P1(0,1),P2(x2,y2),…,Pn(xn,yn),Pn+1(xn+1,yn+1)(n∈N*)是經(jīng)過(guò)點(diǎn)變換得到的一列點(diǎn).設(shè)an=|PnPn+1|,數(shù)列{an}的前n項(xiàng)和為Sn,那么S20的值為( 。

查看答案和解析>>


同步練習(xí)冊(cè)答案