又由(Ⅱ)可得 查看更多

 

題目列表(包括答案和解析)

(1)利用函數(shù)單調(diào)性的定義證明函數(shù)h(x)=x+
3
x
在[
3
,∞)
上是增函數(shù);
(2)我們可將問題(1)的情況推廣到以下一般性的正確結(jié)論:已知函數(shù)y=x+
t
x
有如下性質(zhì):如果常數(shù)t>0,那么該函數(shù)在(0,
t
]
上是減函數(shù),在[
t
,+∞)
上是增函數(shù).
若已知函數(shù)f(x)=
4x2-12x-3
2x+1
,x∈[0,1],利用上述性質(zhì)求出函數(shù)f(x)的單調(diào)區(qū)間;又已知函數(shù)g(x)=-x-2a,問是否存在這樣的實(shí)數(shù)a,使得對(duì)于任意的x1∈[0,1],總存在x2∈[0,1],使得g(x2)=f(x1)成立,若不存在,請(qǐng)說明理由;如存在,請(qǐng)求出這樣的實(shí)數(shù)a的值.

查看答案和解析>>

(2013•南通三模)設(shè)f(x)是定義在(0,+∞)的可導(dǎo)函數(shù),且不恒為0,記gn(x)=
f(x)
xn
(n∈N*)
.若對(duì)定義域內(nèi)的每一個(gè)x,總有g(shù)n(x)<0,則稱f(x)為“n階負(fù)函數(shù)”;若對(duì)定義域內(nèi)的每一個(gè)x,總有[gn(x)]≥0,則稱f(x)為“n階不減函數(shù)”([gn(x)]為函數(shù)gn(x)的導(dǎo)函數(shù)).
(1)若f(x)=
a
x3
-
1
x
-x(x>0)
既是“1階負(fù)函數(shù)”,又是“1階不減函數(shù)”,求實(shí)數(shù)a的取值范圍;
(2)對(duì)任給的“2階不減函數(shù)”f(x),如果存在常數(shù)c,使得f(x)<c恒成立,試判斷f(x)是否為“2階負(fù)函數(shù)”?并說明理由.

查看答案和解析>>

(本小題滿分14分)

某工廠生產(chǎn)A、B兩種產(chǎn)品,已知制造A產(chǎn)品1 kg要用煤9 t,電力4 kw,勞力(按工作日計(jì)算)3個(gè);制造B產(chǎn)品1 kg要用煤4 t,電力5 kw,勞力10個(gè)。又已知制成A產(chǎn)品1 kg可獲利7萬元,制成B產(chǎn)品1 kg可獲利12萬元,F(xiàn)在此工廠由于受到條件限制只有煤360 t,電力200 kw,勞力300個(gè),在這種條件下應(yīng)生產(chǎn)A、B產(chǎn)品各多少kg能獲得最大的經(jīng)濟(jì)效益?

查看答案和解析>>

第(1)小題滿分4分,第(2)小題滿分6分,第(3)小題滿分8分.

如果存在常數(shù)使得數(shù)列滿足:若是數(shù)列中的一項(xiàng),則也是數(shù)列中的一項(xiàng),稱數(shù)列為“兌換數(shù)列”,常數(shù)是它的“兌換系數(shù)”.

(1)若數(shù)列:是“兌換系數(shù)”為的“兌換數(shù)列”,求的值;

(2)已知有窮等差數(shù)列的項(xiàng)數(shù)是,所有項(xiàng)之和是,求證:數(shù)列是“兌換數(shù)列”,并用表示它的“兌換系數(shù)”;

(3)對(duì)于一個(gè)不少于3項(xiàng),且各項(xiàng)皆為正整數(shù)的遞增數(shù)列,是否有可能它既是等比數(shù)列,又是“兌換數(shù)列”?給出你的結(jié)論并說明理由.

 

查看答案和解析>>

第(1)小題滿分4分,第(2)小題滿分6分,第(3)小題滿分8分.
如果存在常數(shù)使得數(shù)列滿足:若是數(shù)列中的一項(xiàng),則也是數(shù)列中的一項(xiàng),稱數(shù)列為“兌換數(shù)列”,常數(shù)是它的“兌換系數(shù)”.
(1)若數(shù)列:是“兌換系數(shù)”為的“兌換數(shù)列”,求的值;
(2)已知有窮等差數(shù)列的項(xiàng)數(shù)是,所有項(xiàng)之和是,求證:數(shù)列是“兌換數(shù)列”,并用表示它的“兌換系數(shù)”;
(3)對(duì)于一個(gè)不少于3項(xiàng),且各項(xiàng)皆為正整數(shù)的遞增數(shù)列,是否有可能它既是等比數(shù)列,又是“兌換數(shù)列”?給出你的結(jié)論并說明理由.

查看答案和解析>>


同步練習(xí)冊(cè)答案