兩邊取對數(shù)并利用已知不等式得 查看更多

 

題目列表(包括答案和解析)

某校高一年級數(shù)學(xué)興趣小組的同學(xué)經(jīng)過研究,證明了以下兩個結(jié)論是完全正確的:①若函數(shù)y=f(x)的圖象關(guān)于點P(a,b)成中心對稱圖形,則函數(shù)y=f(x+a)-b是奇函數(shù);②若函數(shù)y=f(x+a)-b是奇函數(shù),則函數(shù)y=f(x)的圖象關(guān)于點P(a,b)成中心對稱圖形.請你利用他們的研究成果完成下列問題:
(1)將函數(shù)g(x)=x3+6x2的圖象向右平移2個單位,再向下平移16個單位,求此時圖象對應(yīng)的函數(shù)解釋式,并利用已知條件中的結(jié)論求函數(shù)g(x)圖象對稱中心的坐標(biāo);
(2)求函數(shù)h(x)=log2
1-x4x
圖象對稱中心的坐標(biāo),并說明理由.

查看答案和解析>>

已知定點O(0,0),A(3,0),動點P到定點O距離與到定點A的距離的比值是
1
λ

(Ⅰ)求動點P的軌跡方程,并說明方程表示的曲線;
(Ⅱ)當(dāng)λ=4時,記動點P的軌跡為曲線D.
①若M是圓E:(x-2)2+(y-4)2=64上任意一點,過M作曲線D的切線,切點是N,求|MN|的取值范圍;
②已知F,G是曲線D上不同的兩點,對于定點Q(-3,0),有|QF|•|QG|=4.試問無論F,G兩點的位置怎樣,直線FG能恒和一個定圓相切嗎?若能,求出這個定圓的方程;若不能,請說明理由.

查看答案和解析>>

(請考生在下面甲、乙兩題中任選一題做答,如果多做,則按所做的甲題計分)

甲題 :

⑴ 若關(guān)于的不等式的解集不是空集,求實數(shù)的取值范圍;

⑵ 已知實數(shù),滿足,求最小值.

 

 

 

乙題:

已知曲線C的極坐標(biāo)方程是=4cos。以極點為平面直角坐標(biāo)系的原點,極軸為軸的正半軸,建立平面直角坐標(biāo)系,直線的參數(shù)方程是是參數(shù))。

       ⑴ 將曲線C的極坐標(biāo)方程化成直角坐標(biāo)方程并把直線的參數(shù)方程轉(zhuǎn)化為普通方程;

       ⑵ 若過定點的直線與曲線C相交于A、B兩點,且,試求實數(shù)的值。

 

查看答案和解析>>

已知定點,動點到定點距離與到定點的距離的比值是.

(Ⅰ)求動點的軌跡方程,并說明方程表示的曲線;

(Ⅱ)當(dāng)時,記動點的軌跡為曲線.

①若是圓上任意一點,過作曲線的切線,切點是,求的取值范圍;

②已知,是曲線上不同的兩點,對于定點,有.試問無論兩點的位置怎樣,直線能恒和一個定圓相切嗎?若能,求出這個定圓的方程;若不能,請說明理由.

 

查看答案和解析>>

我們把形如的函數(shù)稱為冪指函數(shù),冪指函數(shù)在求導(dǎo)時,可以利用對數(shù)法:在函數(shù)解析式兩邊取對數(shù)得,兩邊對x求導(dǎo)數(shù),得于是,運用此方法可以求得函數(shù)在(1,1)處的切線方程是          .

 

查看答案和解析>>


同步練習(xí)冊答案