題目列表(包括答案和解析)
如圖,三棱錐中,側(cè)面底面, ,且,.(Ⅰ)求證:平面;
(Ⅱ)若為側(cè)棱PB的中點(diǎn),求直線AE與底面所成角的正弦值.
【解析】第一問(wèn)中,利用由知, ,
又AP=PC=2,所以AC=2,
又AB=4, BC=2,,所以,所以,即,
又平面平面ABC,平面平面ABC=AC, 平面ABC,
平面ACP,所以第二問(wèn)中結(jié)合取AC中點(diǎn)O,連接PO、OB,并取OB中點(diǎn)H,連接AH、EH,因?yàn)镻A=PC,所以PO⊥AC,同(Ⅰ)易證平面ABC,又EH//PO,所以EH平面ABC ,
則為直線AE與底面ABC 所成角,
解
(Ⅰ) 證明:由用由知, ,
又AP=PC=2,所以AC=2,
又AB=4, BC=2,,所以,所以,即,
又平面平面ABC,平面平面ABC=AC, 平面ABC,
平面ACP,所以
………………………………………………6分
(Ⅱ)如圖, 取AC中點(diǎn)O,連接PO、OB,并取OB中點(diǎn)H,連接AH、EH,
因?yàn)镻A=PC,所以PO⊥AC,同(Ⅰ)易證平面ABC,
又EH//PO,所以EH平面ABC ,
則為直線AE與底面ABC 所成角,
且………………………………………10分
又PO=1/2AC=,也所以有EH=1/2PO=,
由(Ⅰ)已證平面PBC,所以,即,
故,
于是
所以直線AE與底面ABC 所成角的正弦值為
填空題
【小題1】已知數(shù)列為等差數(shù)列,為其前項(xiàng)和
【小題2】函數(shù)的反函數(shù)為,則 。
【小題3】已知球O的表面上四點(diǎn)A、B、C、D,平面ABC,ABBC,DA=AB=BC=,則球O的體積等于 。
【小題4】某校在2010年的“八校第一次聯(lián)考”中有1000人參加考試,數(shù)學(xué)考試的成績(jī)(,試卷滿分150分),統(tǒng)計(jì)結(jié)果顯示數(shù)學(xué)考試成績(jī)?cè)?0分到110分之間的人數(shù)約為總?cè)藬?shù)的,則此次數(shù)學(xué)考試成績(jī)不低于110分的學(xué)生約有 人。
【小題5】有一種數(shù)學(xué)推理游戲,游戲規(guī)則如下:
①在9×9的九宮格子中,分成9個(gè)3×3的小九格,用1到9這9個(gè)數(shù)填滿整個(gè)格子;
②每一行與每一列都有1到9的數(shù)字,每個(gè)小九宮格里也有1到9的數(shù)字,并且一個(gè)數(shù)字在每 行每列及每個(gè)小九宮格里只能出現(xiàn)一次,既不能重復(fù)也不能少,那么A處應(yīng)填入的數(shù)字為 ;B處應(yīng)填入的數(shù)字為 。
已知某幾何體的直觀圖和三視圖如下圖所示, 其正視圖為矩形,左視圖為等腰直角三角形,俯視圖為直角梯形.
(1)證明:平面;
(2)求二面角的余弦值;
(3)為的中點(diǎn),在線段上是否存在一點(diǎn),使得平面,若存在,求出的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.
(本題滿分14分)已知函數(shù)
(1)用五點(diǎn)法畫出它在一個(gè)周期內(nèi)的閉區(qū)間上的圖象;
(2)指出的周期、振幅、初相、對(duì)稱軸;
(3)說(shuō)明此函數(shù)圖象可由上的圖象經(jīng)怎樣的變換得到
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com