解:(Ⅰ)設(shè).由得 , ------7分(Ⅱ)解:由得:.所以直線(xiàn)的參數(shù)方程為. ----------3分代入化簡(jiǎn)得:.-----4分因?yàn)?則.所以------7分(Ⅲ)根據(jù)排序不等式得:亂序和>反序和------7分 查看更多

 

題目列表(包括答案和解析)

(2013•煙臺(tái)二模)為了解某班學(xué)生喜愛(ài)打籃球是否與性別有關(guān),對(duì)本班50人進(jìn)行了問(wèn)卷調(diào)查得到了如下的列聯(lián)表:
喜愛(ài)打籃球 不喜愛(ài)打籃球 合計(jì)
男生 5
女生 10
合計(jì) 50
已知在全部50人中隨機(jī)抽取1人抽到喜愛(ài)打籃球的學(xué)生的概率為
3
5

(1)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整(不用寫(xiě)計(jì)算過(guò)程);
(2)能否在犯錯(cuò)誤的概率不超過(guò)0.005的前提下認(rèn)為喜愛(ài)打籃球與性別有關(guān)?說(shuō)明你的理由;
(3)現(xiàn)從女生中抽取2人進(jìn)一步調(diào)查,設(shè)其中喜愛(ài)打籃球的女生人數(shù)為ξ,求ξ的分布列與期望.
下面的臨界值表供參考:
P(K2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k 2.072 2.706 3.841 5.024 6.635 7.879 10.828
(參考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d)

查看答案和解析>>

設(shè)橢圓 )的一個(gè)頂點(diǎn)為,,分別是橢圓的左、右焦點(diǎn),離心率 ,過(guò)橢圓右焦點(diǎn) 的直線(xiàn)  與橢圓 交于 , 兩點(diǎn).

(1)求橢圓的方程;

(2)是否存在直線(xiàn) ,使得 ,若存在,求出直線(xiàn)  的方程;若不存在,說(shuō)明理由;

【解析】本試題主要考查了橢圓的方程的求解,以及直線(xiàn)與橢圓的位置關(guān)系的運(yùn)用。(1)中橢圓的頂點(diǎn)為,即又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061917121082894691/SYS201206191714546570844292_ST.files/image015.png">,得到,然后求解得到橢圓方程(2)中,對(duì)直線(xiàn)分為兩種情況討論,當(dāng)直線(xiàn)斜率存在時(shí),當(dāng)直線(xiàn)斜率不存在時(shí),聯(lián)立方程組,結(jié)合得到結(jié)論。

解:(1)橢圓的頂點(diǎn)為,即

,解得, 橢圓的標(biāo)準(zhǔn)方程為 --------4分

(2)由題可知,直線(xiàn)與橢圓必相交.

①當(dāng)直線(xiàn)斜率不存在時(shí),經(jīng)檢驗(yàn)不合題意.                    --------5分

②當(dāng)直線(xiàn)斜率存在時(shí),設(shè)存在直線(xiàn),且,.

,       ----------7分

,,               

   = 

所以,                               ----------10分

故直線(xiàn)的方程為 

 

查看答案和解析>>

為了解七班學(xué)生喜愛(ài)打籃球是否與性別有關(guān),對(duì)本班50人進(jìn)行了問(wèn)卷調(diào)查得到了如下的列聯(lián)表:

 
喜愛(ài)打籃球
不喜愛(ài)打籃球
合計(jì)
男生
 
5
 
女生
10
 
 
合計(jì)
 
 
50
 
已知在全部50人中隨機(jī)抽取1人抽到喜愛(ài)打籃球的學(xué)生的概率為.(12分)
(1)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整(不用寫(xiě)計(jì)算過(guò)程);
(2)能否在犯錯(cuò)誤的概率不超過(guò)0.005的前提下認(rèn)為喜愛(ài)打籃球與性別有關(guān)?說(shuō)明你的理由;
(3)現(xiàn)從女生中抽取2人進(jìn)一步調(diào)查,設(shè)其中喜愛(ài)打籃球的女生人數(shù)為,求的分布列與期望.
下面的臨界值表供參考:

0.15
0.10
0.05[
0.025
0.010
0.005
0.001

2.072
2.706
3.841
5.024
6.635
7.879
10.828
 
(參考公式:,其中)

查看答案和解析>>

 

為了解某班學(xué)生喜愛(ài)打籃球是否與性別有關(guān),對(duì)本班50人進(jìn)行了問(wèn)卷調(diào)查得到了如下的列聯(lián)表:

 

喜愛(ài)打籃球

不喜愛(ài)打籃球

合計(jì)

男生

 

5

 

女生

10

 

 

合計(jì)

 

 

50

已知在全部50人中隨機(jī)抽取1人抽到喜愛(ài)打籃球的學(xué)生的概率為

(1)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整(不用寫(xiě)計(jì)算過(guò)程);

(2)能否在犯錯(cuò)誤的概率不超過(guò)0.005的前提下認(rèn)為喜愛(ài)打籃球與性別有關(guān)?說(shuō)明你的理由;

(3)現(xiàn)從女生中抽取2人進(jìn)一步調(diào)查,設(shè)其中喜愛(ài)打籃球的女生人數(shù)為,求的分布列與期望.

下面的臨界值表供參考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

 (參考公式:,其中)

 

查看答案和解析>>

(本小題滿(mǎn)分14分)

為了解某班學(xué)生喜愛(ài)打籃球是否與性別有關(guān),對(duì)本班50人進(jìn)行了問(wèn)卷調(diào)查得到了如下的列聯(lián)表:

 

喜愛(ài)打籃球

不喜愛(ài)打籃球

合計(jì)

男生

 

5

 

女生

10

 

 

合計(jì)

 

 

50

已知在全部50人中隨機(jī)抽取1人抽到喜愛(ài)打籃球的學(xué)生的概率為

(1)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整(不用寫(xiě)計(jì)算過(guò)程);

(2)能否在犯錯(cuò)誤的概率不超過(guò)0.005的前提下認(rèn)為喜愛(ài)打籃球與性別有關(guān)?說(shuō)明你的理由;

(3)現(xiàn)從女生中抽取2人進(jìn)一步調(diào)查,設(shè)其中喜愛(ài)打籃球的女生人數(shù)為,求的分布列與期望.

下面的臨界值表供參考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

 (參考公式:,其中)

 

查看答案和解析>>


同步練習(xí)冊(cè)答案