20. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分14分)

已知函數(shù)。

(1)證明:

(2)若數(shù)列的通項(xiàng)公式為,求數(shù)列 的前項(xiàng)和;w.w.w.k.s.5.u.c.o.m    

(3)設(shè)數(shù)列滿足:,設(shè),

若(2)中的滿足對(duì)任意不小于2的正整數(shù),恒成立,

試求的最大值。

查看答案和解析>>

(本小題滿分14分)已知,點(diǎn)軸上,點(diǎn)軸的正半軸,點(diǎn)在直線上,且滿足. w.w.w.k.s.5.u.c.o.m    

(Ⅰ)當(dāng)點(diǎn)軸上移動(dòng)時(shí),求動(dòng)點(diǎn)的軌跡方程;

(Ⅱ)過的直線與軌跡交于、兩點(diǎn),又過作軌跡的切線、,當(dāng),求直線的方程.

查看答案和解析>>

(本小題滿分14分)設(shè)函數(shù)

 (1)求函數(shù)的單調(diào)區(qū)間;

 (2)若當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍;w.w.w.k.s.5.u.c.o.m    

 (3)若關(guān)于的方程在區(qū)間上恰好有兩個(gè)相異的實(shí)根,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

(本小題滿分14分)

已知,其中是自然常數(shù),

(1)討論時(shí), 的單調(diào)性、極值;w.w.w.k.s.5.u.c.o.m    

(2)求證:在(1)的條件下,;

(3)是否存在實(shí)數(shù),使的最小值是3,若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

(本小題滿分14分)

設(shè)數(shù)列的前項(xiàng)和為,對(duì)任意的正整數(shù),都有成立,記。

(I)求數(shù)列的通項(xiàng)公式;

(II)記,設(shè)數(shù)列的前項(xiàng)和為,求證:對(duì)任意正整數(shù)都有;

(III)設(shè)數(shù)列的前項(xiàng)和為。已知正實(shí)數(shù)滿足:對(duì)任意正整數(shù)恒成立,求的最小值。

查看答案和解析>>

 

一、選擇題:本大題共10小題,每小題5分,共50分.

題號(hào)

1

2

3

4

5

6

7

8

9

10

答案

D

A

D

A

C

B

A

C

B

C

 

二、填空題:本大題共4小題,每小題5分,共20分.其中12題的第一個(gè)空3分,第二

個(gè)空2分.

11..     12..     13..     14..

三、解答題:本大題共6小題,共80分.解答應(yīng)寫出文字說明、演算步驟或推證過程.

15.解:(1) 根據(jù)題意,可知,,即.  ……………………………2分

于是.  ………………………………………………………………………………………………3分

將點(diǎn)代入,得

.     …………………………………………………………5分

滿足的最小正數(shù).  ……………………………………………………………7分

從而所求的函數(shù)解析式是.    ……………………………………………8分

(2)略.(振幅變換1分.周期變換、相位變換做對(duì)一個(gè)2分,全對(duì)3分)   ……12分

16.解:顯然是隨機(jī)變量.

(1)..  …………………………………6分

    (2)由的期望為,得

,即. …………………9分

    根據(jù)表中數(shù)據(jù),得,即. ………………………………………………11分

    聯(lián)立解得. …………………………………………………………………………………………12分

17.解:(1)連結(jié)PQ,AQ.

∵△PCD為正三角形,  ∴PQCD.

∵底面ABCD是∠ADC的菱形,∴AQCD.

CD⊥平面PAQ.  ………………………………………………………………………………………………4分

PACD.

(2)設(shè)平面CDMPAN,∵CD//AB,  ∴CD//平面PAB.  ∴CD//MN.

由于MPB的中點(diǎn),∴NPA的中點(diǎn). 又PD=CD=AD,∴DNPA.

    由(1)可知PACD,  ∴PA⊥平面CDM.  ………………………………8分

∴平面CDM⊥平面PAB.

PA⊥平面CDM,聯(lián)接QN、QA,則ÐAQNAQ與平面CDM所成的角.  ……10分

在RtDPMA中,AM=PM=,

AP=,∴AN=,sinÐAQN==.

∴ÐAQN =45°.…………………………………………………14分

(2)另解(用空間向量解):

由(1)可知PQCD,AQCD.

又由側(cè)面PDC⊥底面ABCD,得PQAQ.

因此可以如圖建立空間直角坐標(biāo)系. ………………………………………………………6分

易知P(0 , 0 ,)、A(, 0 , 0)、B(, 2 , 0)、

C(0 , 1 , 0)、D(0 , -1 , 0). ………………………………………………………………………………7分

①由=(, 0 , -),=(0 , -2 , 0),得×=0.

PACD. ……………………………………………………………………………………………………………9分

②由M, 1 , -),=(, 0 , -),得×=0.

PACM . ……………………………………………………………………10分

PA⊥平面CDM,即平面CDM⊥平面PAB.

從而就是平面CDM的法向量.………………………12分

設(shè)AQ與平面所成的角為q

則sinq =|cos<,>|=.

AQ與平面所成的角為45°.……………………14分

18.解:(1)根據(jù)題意,有解,

. ……………………………………………………………………………3分

(2)若函數(shù)可以在時(shí)取得極值,

有兩個(gè)解,且滿足.

易得.  ………………………………………………………………………………………………6分

(3)由(2),得. ………………………………………………………………7分

根據(jù)題意,()恒成立.  ……………………………………………9分

∵函數(shù))在時(shí)有極大值(用求導(dǎo)的方法),

且在端點(diǎn)處的值為.

∴函數(shù))的最大值為.   …………………………13分

所以. …………………………………………………………………………………………………………14分

 

19.解:(1)由于橢圓過點(diǎn),故.…………………………………1分

,橫坐標(biāo)適合方程

解得().………………………………………………………4分

,橫坐標(biāo)是().……………………………………5分

(2)根據(jù)題意,可設(shè)拋物線方程為.  …………………6分

,∴.………………………………………………………………7分

(等同于,坐標(biāo)(,))代入式拋物線方

程,得. ……………………………………9分

.……………………………………10分

內(nèi)有根(并且是單調(diào)遞增函數(shù)),

………………………………………………………………13分

解得. …………………………………………………………………………………………14分

20.解:(1)∵f1(0)=2,a1==,fn+1(0)= f1fn(0)]=, …………2分

an+1==== -= -an. ……………4分

∴數(shù)列{an}是首項(xiàng)為,公比為-的等比數(shù)列,∴an=()n-1.  ………………5分

(2)∵T2 n = a1+2a 2+3a 3+…+(2n-1)a 2 n-1+2na 2 n

T2 n= (-a1)+(-)2a 2+(-)3a 3+…+(-)(2n-1)a2 n1+2na2 n

= a 2+2a 3+…+(2n-1)a2 nna2 n.

兩式相減,得T2 n= a1+a2+a 3+…+a2 n+na2 n.  ……………………………………………………7分

T2n =+n×(-)2n-1=-(-)2n+(-)2n-1.

T2n =-(-)2n+(-)2n-1=(1-). ……………9分∴9T2n=1-.

Qn=1-, ……………………………………………………………………………………………10分

當(dāng)n=1時(shí),22 n= 4,(2n+1)2=9,∴9T2 nQ n;  ……………………………………………………11分

當(dāng)n=2時(shí),22 n=16,(2n+1)2=25,∴9T2 nQn;   …………………………………………………12分

當(dāng)n≥3時(shí),,

∴9T2 nQ n. …………………………………………………………………………………………………………14分

 


同步練習(xí)冊(cè)答案