題目列表(包括答案和解析)
(2010·湖南省長(zhǎng)沙市調(diào)研)一宇航員到達(dá)半徑為R、密度均勻的某星球表面,做如下實(shí)驗(yàn):用不可伸長(zhǎng)的輕繩拴一質(zhì)量為m的小球,上端固定在O點(diǎn),如圖6甲所示,在最低點(diǎn)給小球某一初速度,使其繞O點(diǎn)的豎直面內(nèi)做圓周運(yùn)動(dòng),測(cè)得繩的拉力F大小隨時(shí)間t的變化規(guī)律如圖乙所示.F1=7F2,設(shè)R、m、引力常量G以及F1為已知量,忽略各種阻力.以下說(shuō)法正確的是 ( )
A.該星球表面的重力加速度為
B.衛(wèi)星繞該星球的第一宇宙速度為
C.星球的質(zhì)量為
D.小球在最高點(diǎn)的最小速度為零
(2013湖南省長(zhǎng)沙市模擬)如圖示,相互垂直的固定絕緣光滑擋板PO,QO豎直放置在重力場(chǎng)中,a、b為兩個(gè)帶有同種電量的小球(可以近似看成點(diǎn)電荷),當(dāng)用水平向左作用力F作用于b時(shí),a、b緊靠擋板處于靜止?fàn)顟B(tài).現(xiàn)若稍改變F的大小,使b稍有向左移動(dòng)一段小距離,則當(dāng)a、b重新處于靜止?fàn)顟B(tài)后
A.a(chǎn)、b間電場(chǎng)力增大
B.作用力F將減小
C.系統(tǒng)重力勢(shì)能增加
D.系統(tǒng)的電勢(shì)能將增加
(2013湖南省長(zhǎng)沙市聯(lián)考)如圖所示,圓心為原點(diǎn)、半徑為的圓將平面分為兩個(gè)區(qū)域,即圓內(nèi)區(qū)域Ⅰ和圓外區(qū)域Ⅱ。區(qū)域Ⅰ內(nèi)有方向垂直于平面的勻強(qiáng)磁場(chǎng)B。平行于x軸的熒光屏垂直于平面,放置在直線的位置。一束質(zhì)量為m、電荷量為q、速度為的帶正電粒子從坐標(biāo)為(,0)的A點(diǎn)沿x軸正方向射入?yún)^(qū)域Ⅰ,粒子全部垂直打在熒光屏上坐標(biāo)為(0,-2R)的點(diǎn)。若區(qū)域Ⅱ中加上平行于x軸的勻強(qiáng)電場(chǎng),從A點(diǎn)沿x軸正方向以速度2射入?yún)^(qū)域Ⅰ的粒子垂直打在熒光屏上的N點(diǎn)。不考慮重力作用,求:
(1)在區(qū)域Ⅰ中磁感應(yīng)強(qiáng)度B的大小和方向。
(2)在區(qū)域Ⅱ中電場(chǎng)的場(chǎng)強(qiáng)為多大?MN兩點(diǎn)間距離是多少?
(2013湖南省長(zhǎng)沙市模擬)鴕鳥(niǎo)是當(dāng)今世界上最大的鳥(niǎo),有人說(shuō),如果鴕鳥(niǎo)能長(zhǎng)出一副與身體大小成比例的翅膀,就能飛起來(lái).生物學(xué)研究的結(jié)論得出:鳥(niǎo)的質(zhì)量與鳥(niǎo)的體長(zhǎng)的立方成正比.鳥(niǎo)扇動(dòng)翅膀,獲得向上的舉力的大小可以表示為F=cSv2,式中S是翅膀展開(kāi)后的面積,v為鳥(niǎo)的運(yùn)動(dòng)速度,c是比例常數(shù).我們不妨以燕子和鴕鳥(niǎo)為例,假設(shè)鴕鳥(niǎo)能長(zhǎng)出和燕子同樣比例的大翅膀,已知燕子的最小飛行速度是5.5 m/s,鴕鳥(niǎo)的最大奔跑速度為22 m/s,又測(cè)得鴕鳥(niǎo)的體長(zhǎng)是燕子的25倍,試分析鴕鳥(niǎo)能飛起來(lái)嗎?
(2011年紹興一中高三月考)如圖所示,圖中實(shí)線是一簇未標(biāo)明方向的由點(diǎn)電荷產(chǎn)生的電場(chǎng)線,虛線是某帶電粒子通過(guò)該電場(chǎng)區(qū)域時(shí)的運(yùn)動(dòng)軌跡,a、b是軌跡上的兩點(diǎn),若帶電粒子在運(yùn)動(dòng)過(guò)程中只受到電場(chǎng)力作用,根據(jù)此圖可以作出正確判斷的是( )
A.帶電粒子所帶電荷的正、負(fù)
B.帶電粒子在a、b兩點(diǎn)的受力方向
C.帶電粒子在a、b兩點(diǎn)的加速度何處較大
D.帶電粒子在a、b兩點(diǎn)的速度何處較大
高考真題
1.【解析】設(shè)物體的質(zhì)量為m,t0時(shí)刻受盒子碰撞獲得速度v,根據(jù)動(dòng)量守恒定律
3t0時(shí)刻物體與盒子右壁碰撞使盒子速度又變?yōu)関0,說(shuō)明碰撞是彈性碰撞 聯(lián)立以上兩式解得 m=M
(也可通過(guò)圖象分析得出v0=v,結(jié)合動(dòng)量守恒,得出正確結(jié)果)
【答案】m=M
2.【解析】由動(dòng)量守恒定律和能量守恒定律得:
解得:
炮彈射出后做平拋,有:
解得目標(biāo)A距炮口的水平距離為:
同理,目標(biāo)B距炮口的水平距離為:
解得:
【答案】
3.【解析】(1)P1滑到最低點(diǎn)速度為,由機(jī)械能守恒定律有:
解得:
P1、P2碰撞,滿(mǎn)足動(dòng)量守恒,機(jī)械能守恒定律,設(shè)碰后速度分別為、
解得: =5m/s
P2向右滑動(dòng)時(shí),假設(shè)P1保持不動(dòng),對(duì)P2有:(向左)
對(duì)P1、M有:
此時(shí)對(duì)P1有:,所以假設(shè)成立。
(2)P2滑到C點(diǎn)速度為,由 得
P1、P2碰撞到P2滑到C點(diǎn)時(shí),設(shè)P1、M速度為v,對(duì)動(dòng)量守恒定律:
解得:
對(duì)P1、P2、M為系統(tǒng):
代入數(shù)值得:
滑板碰后,P1向右滑行距離:
P2向左滑行距離:
所以P1、P2靜止后距離:
【答案】(1)(2)
4.【解析】(1)P1經(jīng)t1時(shí)間與P2碰撞,則
P1、P2碰撞,設(shè)碰后P2速度為v2,由動(dòng)量守恒:
解得(水平向左) (水平向右)
碰撞后小球P1向左運(yùn)動(dòng)的最大距離: 又:
解得:
所需時(shí)間:
(2)設(shè)P1、P2碰撞后又經(jīng)時(shí)間在OB區(qū)間內(nèi)再次發(fā)生碰撞,且P1受電場(chǎng)力不變,由運(yùn)動(dòng)學(xué)公式,以水平向右為正: 則:
解得: (故P1受電場(chǎng)力不變)
對(duì)P2分析:
所以假設(shè)成立,兩球能在OB區(qū)間內(nèi)再次發(fā)生碰撞。
5.【解析】從兩小球碰撞后到它們?cè)俅蜗嘤,小球A和B的速度大小保持不變。根據(jù)它們通過(guò)的路程,可知小球B和小球A在碰撞后的速度大小之比為4┱1。
設(shè)碰撞后小球A和B 的速度分別為和,在碰撞過(guò)程中動(dòng)量守恒,碰撞前后動(dòng)能相等,有
………… ①
………… ②
聯(lián)立以上兩式再由,可解出 m1∶m2=2∶1
【答案】2∶1
6.【解析】⑴碰后B上擺過(guò)程機(jī)械能守恒,可得。
⑵兩球發(fā)生彈性碰撞過(guò)程系統(tǒng)動(dòng)量守恒,機(jī)械能守恒。設(shè)與B碰前瞬間A的速度是v0,有2mv0=2mvA+mvB,,可得vA= v0/3,vB= 4v0/3,因此,同時(shí)也得到。
⑶先由A平拋的初速度vA和水平位移L/2,求得下落高度恰好是L。即兩球碰撞點(diǎn)到水平面的高度是L。A離開(kāi)彈簧時(shí)的初動(dòng)能可以認(rèn)為就等于彈性力對(duì)A做的功。A離開(kāi)彈簧上升的全過(guò)程用機(jī)械能守恒:,解得W=
【答案】(1) (2)W=
7.【解析】此題是單個(gè)質(zhì)點(diǎn)碰撞的多過(guò)程問(wèn)題,既可以用動(dòng)能定理與動(dòng)量定理求解,也可以用力與運(yùn)動(dòng)關(guān)系與動(dòng)量求解.設(shè)小物塊從高為h處由靜止開(kāi)始沿斜面向下運(yùn)動(dòng),到達(dá)斜面底端時(shí)速度為v。
由動(dòng)能定理得 ①
以沿斜面向上為動(dòng)量的正方向。按動(dòng)量定理,碰撞過(guò)程中擋板給小物塊的沖量
②
設(shè)碰撞后小物塊所能達(dá)到的最大高度為h’,則 ③
同理,有 ④ ⑤
式中,v’為小物塊再次到達(dá)斜面底端時(shí)的速度,I’為再次碰撞過(guò)程中擋板給小物塊的沖量。由①②③④⑤式得 ⑥式中 ⑦
由此可知,小物塊前4次與擋板碰撞所獲得的沖量成等比級(jí)數(shù),首項(xiàng)為
⑧總沖量為 ⑨
由 ( ⑩得⑾
代入數(shù)據(jù)得 N?s
【答案】 N?s
8.【解析】此題開(kāi)始的繩連的系統(tǒng),后粘合變成了小球單個(gè)質(zhì)點(diǎn)的運(yùn)動(dòng)問(wèn)題(1)對(duì)系統(tǒng),設(shè)小球在最低點(diǎn)時(shí)速度大小為v1,此時(shí)滑塊的速度大小為v2,滑塊與擋板接觸前由系統(tǒng)的機(jī)械能守恒定律:mgl = mv12 +mv22①
由系統(tǒng)的水平方向動(dòng)量守恒定律:mv1 = mv2②
對(duì)滑塊與擋板接觸到速度剛好變?yōu)榱愕倪^(guò)程中,擋板阻力對(duì)滑塊的沖量為:I = mv2③
聯(lián)立①②③解得I = m 方向向左④
(2)小球釋放到第一次到達(dá)最低點(diǎn)的過(guò)程中,設(shè)繩的拉力對(duì)小球做功的大小為W,對(duì)小球由動(dòng)能定理:mgl+W = mv12⑤
聯(lián)立①②⑤解得:W =-mgl,即繩的拉力對(duì)小球做負(fù)功,大小為mgl 。
【答案】(1)I = m 方向向左;(2)mgl
9.【解析】(1)設(shè)B在繩被拉斷后瞬間的速度為,到達(dá)C點(diǎn)時(shí)的速度為,有
(1) (2)
代入數(shù)據(jù)得 (3)
(2)設(shè)彈簧恢復(fù)到自然長(zhǎng)度時(shí)B的速度為,取水平向右為正方向,有
(4) (5)
代入數(shù)據(jù)得 其大小為4NS (6)
(3)設(shè)繩斷后A的速度為,取水平向右為正方向,有
(7) 代入數(shù)據(jù)得
【答案】(1) (2)4NS 。ǎ常
10.【解析】設(shè)擺球A、B的質(zhì)量分別為、,擺長(zhǎng)為l,B球的初始高度為h1,碰撞前B球的速度為vB.在不考慮擺線質(zhì)量的情況下,根據(jù)題意及機(jī)械能守恒定律得
①
②
設(shè)碰撞前、后兩擺球的總動(dòng)量的大小分別為P1、P2。有
P1=mBvB ③
聯(lián)立①②③式得
④
同理可得
⑤
聯(lián)立④⑤式得
代入已知條件得 由此可以推出≤4%
所以,此實(shí)驗(yàn)在規(guī)定的范圍內(nèi)驗(yàn)證了動(dòng)量守恒定律。
【答案】≤4%
名校試題
1.【解析】(1)M靜止時(shí),設(shè)彈簧壓縮量為l0,則Mg=kl0 ①
速度最大時(shí),M、m組成的系統(tǒng)加速度為零,則
(M+m)g-k(l0+l1)=0 ②-
聯(lián)立①②解得:k=50N/m ③
[或:因M初位置和速度最大時(shí)都是平衡狀態(tài),故mg=kl1,解得:k=50N/m]
(2)m下落h過(guò)程中,mgh=mv02 ④-
m沖擊M過(guò)程中, m v0=(M+m)v ⑤-
所求過(guò)程的彈性勢(shì)能的增加量:ΔE=(M+m)g(l1+l2)+ (M+m)v2 ⑥
聯(lián)立④⑤⑥解得:ΔE=0.66J ⑦
(用彈性勢(shì)能公式計(jì)算的結(jié)果為ΔE=0.65J也算正確)
【答案】ΔE=0.66J
2.【解析】①根據(jù)圖象可知,物體C與物體A相碰前的速度為:v1=
相碰后的速度為:v2=
解得:m3=
②規(guī)定向左的方向?yàn)檎较,在?.0s和第15s末物塊A的速度分別為:
v2=
即在5.0s到15s的時(shí)間內(nèi)物塊A動(dòng)量變化的大小為:
【答案】(1)m3=2.0kg (2)16kg?m/s 方向向右
3.【解析】(1)設(shè)第一顆子彈進(jìn)入靶盒A后,子彈與靶盒的共內(nèi)速度為。
根據(jù)碰撞過(guò)程系統(tǒng)動(dòng)量守恒,有:
設(shè)A離開(kāi)O點(diǎn)的最大距離為,由動(dòng)能定理有:
解得:
(2)根據(jù)題意,A在的恒力F的作用返回O點(diǎn)時(shí)第二顆子彈正好打入,由于A的動(dòng)量與第二顆子彈動(dòng)量大小相同,方向相反,故第二顆子彈打入后,A將靜止在O點(diǎn)。設(shè)第三顆子彈打入A后,它們的共同速度為,由系統(tǒng)動(dòng)量守恒得:。2分)
設(shè)A從離開(kāi)O點(diǎn)到又回到O點(diǎn)所經(jīng)歷的時(shí)間為t,取碰后A運(yùn)動(dòng)的方向?yàn)檎较,由?dòng)量定理得: 解得:
(3)從第(2)問(wèn)的計(jì)算可以看出,第1、3、5、……(2n+1)顆子彈打入A后,A運(yùn)動(dòng)時(shí)間均為 故總時(shí)間
【答案】(1) (2) (3)
4.【解析】對(duì)A、B、C整體,從C以v0滑上木塊到最終B、C達(dá)到共同速度V,
其動(dòng)量守恒既:m v0=2mV1+3mv 1.8=2V1+3×0.4 V1=0.3m/s
對(duì)A、B、C整體,從C以v0滑上木塊到C以V2剛離開(kāi)長(zhǎng)木板,
此時(shí)A、B具有共同的速度V1。其動(dòng)量守恒即:m v0=mV2+4mv1
1.8=V2+4×0.3 V2=
【答案】 (1)V1=
5.【解析】(1)B與A碰撞前速度由動(dòng)能定理
得
B與A碰撞,由動(dòng)量守恒定律
得
碰后到物塊A、B運(yùn)動(dòng)至速度減為零,彈簧的最大彈性勢(shì)能
(2)設(shè)撤去F后,A、B一起回到O點(diǎn)時(shí)的速度為,由機(jī)械能守恒得
返回至O點(diǎn)時(shí),A、B開(kāi)始分離,B在滑動(dòng)摩擦力作用下向左作勻減速直線運(yùn)動(dòng),設(shè)物塊B最終離O點(diǎn)最大距離為x
由動(dòng)能定理得:
【答案】(1) (2)
6.【解析】設(shè)小車(chē)初速度為V0,A與車(chē)相互作用摩擦力為f,
第一次碰后A與小車(chē)相對(duì)靜止時(shí)速為 V1,由動(dòng)量守恒,
得 mAV0-mBV0=(mA+mB)V1
由能量守恒,得mAV02+mBV02=f?L+(mA+mB)V12… 圖14
多次碰撞后,A停在車(chē)右端,系統(tǒng)初動(dòng)能全部轉(zhuǎn)化為內(nèi)能,由能量守恒,得
fL=(mA+mB)V02…
聯(lián)系以上三式,解得:(mA+mB)2=4(mA-mB)2 =∴mA=3mB
【答案】mA=3mB
7.【解析】(1)當(dāng)B離開(kāi)墻壁時(shí),A的速度為v0,由機(jī)械能守恒有
mv02=E 解得 v0=
(2)以后運(yùn)動(dòng)中,當(dāng)彈簧彈性勢(shì)能最大時(shí),彈簧達(dá)到最大程度時(shí),A、B速度相等,設(shè)為v,由動(dòng)量守恒有 2mv=mv0 解得 v=
(3)根據(jù)機(jī)械能守恒,最大彈性勢(shì)能為
Ep=mv02-2mv2=E
【答案】(1)v0= (2)v= (3)Ep=E
8.【解析】設(shè)子彈的質(zhì)量為m,木塊的質(zhì)量為M,子彈射出槍口時(shí)的速度為v0。
第一顆子彈射入木塊時(shí),動(dòng)量守恒
木塊帶著子彈做平拋運(yùn)動(dòng)
第二顆子彈射入木塊時(shí),動(dòng)量守恒
木塊帶著兩顆子彈做平拋運(yùn)動(dòng)
聯(lián)立以上各式解得
【答案】
9.【解析】
|