[解析]分析選擇支可知.四條曲線中有且只有一條曲線不符合要求.故可考慮找不符合條件的曲線從而篩選.而在四條曲線中.②是一個(gè)面積最大的橢圓.故可先看②.顯然直線和曲線是相交的.因?yàn)橹本上的點(diǎn)在橢圓內(nèi).對(duì)照選項(xiàng).應(yīng)選D. 六.分析法:就是對(duì)有關(guān)概念進(jìn)行全面.正確.深刻的理解或?qū)τ嘘P(guān)信息提取.分析和加工后而作出判斷和選擇的方法. 分析法主要包括:特征分析法.邏輯分析法.直覺分析法等. 查看更多

 

題目列表(包括答案和解析)

已知曲線的參數(shù)方程是是參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線:的極坐標(biāo)方程是=2,正方形ABCD的頂點(diǎn)都在上,且A,B,C,D依逆時(shí)針次序排列,點(diǎn)A的極坐標(biāo)為(2,).

(Ⅰ)求點(diǎn)A,B,C,D的直角坐標(biāo);

 (Ⅱ)設(shè)P為上任意一點(diǎn),求的取值范圍.

【命題意圖】本題考查了參數(shù)方程與極坐標(biāo),是容易題型.

【解析】(Ⅰ)由已知可得,,

,,

即A(1,),B(-,1),C(―1,―),D(,-1),

(Ⅱ)設(shè),令=,

==,

,∴的取值范圍是[32,52]

 

查看答案和解析>>

現(xiàn)有4個(gè)人去參加某娛樂活動(dòng),該活動(dòng)有甲、乙兩個(gè)游戲可供參加者選擇.為增加趣味性,約定:每個(gè)人通過(guò)擲一枚質(zhì)地均勻的骰子決定自己去參加哪個(gè)游戲,擲出點(diǎn)數(shù)為1或2的人去參加甲游戲,擲出點(diǎn)數(shù)大于2的人去參加乙游戲.

(Ⅰ)求這4個(gè)人中恰有2人去參加甲游戲的概率;

(Ⅱ)求這4個(gè)人中去參加甲游戲的人數(shù)大于去參加乙游戲的人數(shù)的概率;

(Ⅲ)用X,Y分別表示這4個(gè)人中去參加甲、乙游戲的人數(shù),記,求隨機(jī)變量的分布列與數(shù)學(xué)期望.

【解析】依題意,這4個(gè)人中,每個(gè)人去參加甲游戲的概率為,去參加乙游戲的概率為.

設(shè)“這4個(gè)人中恰有i人去參加甲游戲”為事件

.

(1)這4個(gè)人中恰有2人去參加甲游戲的概率

(2)設(shè)“這4個(gè)人中去參加甲游戲的人數(shù)大于去參加乙游戲的人數(shù)”為事件B,則.由于互斥,故

所以,這個(gè)人中去參加甲游戲的人數(shù)大于去參加乙游戲的人數(shù)的概率為.

(3)的所有可能取值為0,2,4.由于互斥,互斥,故

    

所以的分布列是

0

2

4

P

隨機(jī)變量的數(shù)學(xué)期望.

 

查看答案和解析>>

已知數(shù)列滿足且對(duì)一切,

(Ⅰ)求證:對(duì)一切

(Ⅱ)求數(shù)列通項(xiàng)公式.   

(Ⅲ)求證:

【解析】第一問(wèn)利用,已知表達(dá)式,可以得到,然后得到,從而求證 。

第二問(wèn),可得數(shù)列的通項(xiàng)公式。

第三問(wèn)中,利用放縮法的思想,我們可以得到

然后利用累加法思想求證得到證明。

解:  (1) 證明:

 

 

查看答案和解析>>

在本次數(shù)學(xué)期中考試試卷中共有10道選擇題,每道選擇題有4個(gè)選項(xiàng),其中只有一個(gè)是正確的。評(píng)分標(biāo)準(zhǔn)規(guī)定:“每題只選一項(xiàng),答對(duì)得5分,不答或答錯(cuò)得0分”.某考生每道題都給出一個(gè)答案, 且已確定有7道題的答案是正確的,而其余題中,有1道題可判斷出兩個(gè)選項(xiàng)是錯(cuò)誤的,有一道可以判斷出一個(gè)選項(xiàng)是錯(cuò)誤的,還有一道因不了解題意只能亂猜。試求出該考生:

(1)選擇題得滿分(50分)的概率;

(2)選擇題所得分?jǐn)?shù)的數(shù)學(xué)期望。

【解析】第一問(wèn)總利用獨(dú)立事件的概率乘法公式得分為50分,10道題必須全做對(duì).在其余的3道題中,有1道題答對(duì)的概率為,有1道題答對(duì)的概率為,還有1道答對(duì)的概率為

所以得分為50分的概率為:

第二問(wèn)中,依題意,該考生得分的范圍為{35,40,45,50}         

得分為35分表示只做對(duì)了7道題,其余各題都做錯(cuò),

所以概率為                            

得分為40分的概率為: 

同理求得,得分為45分的概率為: 

得分為50分的概率為:

得到分布列和期望值。

解:(1)得分為50分,10道題必須全做對(duì).在其余的3道題中,有1道題答對(duì)的概率為,有1道題答對(duì)的概率為,還有1道答對(duì)的概率為,

所以得分為50分的概率為:                   …………5分

(2)依題意,該考生得分的范圍為{35,40,45,50}            …………6分

得分為35分表示只做對(duì)了7道題,其余各題都做錯(cuò),

所以概率為                              …………7分

得分為40分的概率為:     …………8分

同理求得,得分為45分的概率為:                     …………9分

得分為50分的概率為:                      …………10分

所以得分的分布列為

35

40

45

50

 

數(shù)學(xué)期望

 

查看答案和解析>>

已知點(diǎn)為圓上的動(dòng)點(diǎn),且不在軸上,軸,垂足為,線段中點(diǎn)的軌跡為曲線,過(guò)定點(diǎn)任作一條與軸不垂直的直線,它與曲線交于、兩點(diǎn)。

(I)求曲線的方程;

(II)試證明:在軸上存在定點(diǎn),使得總能被軸平分

【解析】第一問(wèn)中設(shè)為曲線上的任意一點(diǎn),則點(diǎn)在圓上,

,曲線的方程為

第二問(wèn)中,設(shè)點(diǎn)的坐標(biāo)為,直線的方程為,  ………………3分   

代入曲線的方程,可得 

,∴

確定結(jié)論直線與曲線總有兩個(gè)公共點(diǎn).

然后設(shè)點(diǎn),的坐標(biāo)分別, ,則,  

要使軸平分,只要得到。

(1)設(shè)為曲線上的任意一點(diǎn),則點(diǎn)在圓上,

,曲線的方程為.  ………………2分       

(2)設(shè)點(diǎn)的坐標(biāo)為,直線的方程為,  ………………3分   

代入曲線的方程,可得 ,……5分            

,∴,

∴直線與曲線總有兩個(gè)公共點(diǎn).(也可根據(jù)點(diǎn)M在橢圓的內(nèi)部得到此結(jié)論)

………………6分

設(shè)點(diǎn),的坐標(biāo)分別, ,則,   

要使軸平分,只要,            ………………9分

,,        ………………10分

也就是,,

,即只要  ………………12分  

當(dāng)時(shí),(*)對(duì)任意的s都成立,從而總能被軸平分.

所以在x軸上存在定點(diǎn),使得總能被軸平分

 

查看答案和解析>>

1. 由函數(shù)6ec8aac122bd4f6e知,當(dāng)時(shí),,且6ec8aac122bd4f6e,則它的反函數(shù)過(guò)點(diǎn)(3,4),故選A.  

 

2.∵,∴,則,即.,選B.

3. 由平行四邊形法則,,

,

,

,當(dāng)P為中點(diǎn)時(shí),取得最小值.選B.

4. 設(shè)是橢圓的一個(gè)焦點(diǎn),它是橢圓三個(gè)頂點(diǎn),,構(gòu)成的三角形的垂心(如圖).由,即,∴,得,解得,選A.

 

5. 設(shè)正方形邊長(zhǎng)為,則.在由正弦定理得,又在由余弦定理得,于是,,選C.

6. 在底面上的射影知,為斜線在平面上的射影,∵,由三垂線定理得,∵,所以直線與直線重合,選A.

 

7. 過(guò)A作拋物線的準(zhǔn)線的垂線AA1交準(zhǔn)線A1,  過(guò)B作橢圓的右準(zhǔn)線的垂線交右準(zhǔn)線于則有:BN=e|BB1|=2-xB,AN=|AA1|=xA+1,周長(zhǎng)=|AN|+|AB|+|BN|=xA+1+(xB-xA)+(2-xB)=3+xB,

由可得兩曲線的交點(diǎn)x=,xB∈(,2),

∴3+xB∈(,4),即△ANB周長(zhǎng)取值范圍是(,4),選B.

 

8. 先將3,5兩個(gè)奇數(shù)排好,有種排法,再將4,6兩個(gè)偶數(shù)插入3,5中,有種排法,最后將1,2 當(dāng)成一個(gè)整體插入5個(gè)空位中,所以這樣的六位數(shù)的個(gè)數(shù)為,選B.


同步練習(xí)冊(cè)答案