題目列表(包括答案和解析)
已知,
求 和的值.
【解析】利用三角恒等變換得到函數(shù)值,
由于
得
解析: 由
得
已知在中,,,,解這個(gè)三角形;
【解析】本試題主要考查了正弦定理的運(yùn)用。由正弦定理得到:,然后又
又再又得到c。
解:由正弦定理得到:
又 ……4分
又 ……8分
又
求由拋物線與直線及所圍成圖形的面積.
【解析】首先利用已知函數(shù)和拋物線作圖,然后確定交點(diǎn)坐標(biāo),然后利用定積分表示出面積為,所以得到,由此得到結(jié)論為
解:設(shè)所求圖形面積為,則
=.即所求圖形面積為.
已知指數(shù)函數(shù),當(dāng)時(shí),有,解關(guān)于x的不等式
【解析】本試題主要考查了指數(shù)函數(shù),對(duì)數(shù)函數(shù)性質(zhì)的運(yùn)用。首先利用指數(shù)函數(shù),當(dāng)時(shí),有,,得到,從而
等價(jià)于,聯(lián)立不等式組可以解得
解:∵ 在時(shí),有, ∴ 。
于是由,得,
解得, ∴ 不等式的解集為。
已知,(其中)
⑴求及;
⑵試比較與的大小,并說(shuō)明理由.
【解析】第一問(wèn)中取,則; …………1分
對(duì)等式兩邊求導(dǎo),得
取,則得到結(jié)論
第二問(wèn)中,要比較與的大小,即比較:與的大小,歸納猜想可得結(jié)論當(dāng)時(shí),;
當(dāng)時(shí),;
當(dāng)時(shí),;
猜想:當(dāng)時(shí),運(yùn)用數(shù)學(xué)歸納法證明即可。
解:⑴取,則; …………1分
對(duì)等式兩邊求導(dǎo),得,
取,則。 …………4分
⑵要比較與的大小,即比較:與的大小,
當(dāng)時(shí),;
當(dāng)時(shí),;
當(dāng)時(shí),; …………6分
猜想:當(dāng)時(shí),,下面用數(shù)學(xué)歸納法證明:
由上述過(guò)程可知,時(shí)結(jié)論成立,
假設(shè)當(dāng)時(shí)結(jié)論成立,即,
當(dāng)時(shí),
而
∴
即時(shí)結(jié)論也成立,
∴當(dāng)時(shí),成立。 …………11分
綜上得,當(dāng)時(shí),;
當(dāng)時(shí),;
當(dāng)時(shí),
1. 構(gòu)造向量,,所以,.由數(shù)量積的性質(zhì),得,即的最大值為2.
2. ∵,令得,所以,當(dāng)時(shí),,當(dāng)時(shí),,所以當(dāng)時(shí),.
3.∵,∴,,又,∴,則,所以周期.作出在上的圖象知:若,滿足條件的()存在,且,關(guān)于直線對(duì)稱(chēng),,關(guān)于直線對(duì)稱(chēng),∴;若,滿足條件的()存在,且,關(guān)于直線對(duì)稱(chēng),,關(guān)于直線對(duì)稱(chēng),
∴.
4. 不等式()表示的區(qū)域是如圖所示的菱形的內(nèi)部,
∵,
當(dāng),點(diǎn)到點(diǎn)的距離最大,此時(shí)的最大值為;
當(dāng),點(diǎn)到點(diǎn)的距離最大,此時(shí)的最大值為3.
5. 由于已有兩人分別抽到5和14兩張卡片,則另外兩人只需從剩下的18張卡片中抽取,共有種情況.抽到5 和14的兩人在同一組,有兩種情況:
(1) 5 和14 為較小兩數(shù),則另兩人需從15~20這6張中各抽1張,有種情況;
(2) 5 和14 為較大兩數(shù),則另兩人需從1~4這4張中各抽1張,有種情況.
于是,抽到5 和14 兩張卡片的兩人在同一組的概率為.
6. ∵,∴,
設(shè),,則.
作出該不等式組表示的平面區(qū)域(圖中的陰影部分).
令,則,它表示斜率為的一組平行直線,易知,當(dāng)它經(jīng)過(guò)點(diǎn)時(shí),取得最小值.
解方程組,得,∴
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com