題目列表(包括答案和解析)
已知,函數(shù)
(1)當(dāng)時(shí),求函數(shù)在點(diǎn)(1,)的切線方程;
(2)求函數(shù)在[-1,1]的極值;
(3)若在上至少存在一個(gè)實(shí)數(shù)x0,使>g(xo)成立,求正實(shí)數(shù)的取值范圍。
【解析】本試題中導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。(1)中,那么當(dāng)時(shí), 又 所以函數(shù)在點(diǎn)(1,)的切線方程為;(2)中令 有
對(duì)a分類討論,和得到極值。(3)中,設(shè),,依題意,只需那么可以解得。
解:(Ⅰ)∵ ∴
∴ 當(dāng)時(shí), 又
∴ 函數(shù)在點(diǎn)(1,)的切線方程為 --------4分
(Ⅱ)令 有
① 當(dāng)即時(shí)
(-1,0) |
0 |
(0,) |
(,1) |
||
+ |
0 |
- |
0 |
+ |
|
極大值 |
極小值 |
故的極大值是,極小值是
② 當(dāng)即時(shí),在(-1,0)上遞增,在(0,1)上遞減,則的極大值為,無極小值。
綜上所述 時(shí),極大值為,無極小值
時(shí) 極大值是,極小值是 ----------8分
(Ⅲ)設(shè),
對(duì)求導(dǎo),得
∵,
∴ 在區(qū)間上為增函數(shù),則
依題意,只需,即
解得 或(舍去)
則正實(shí)數(shù)的取值范圍是(,)
16.(2)解(1)當(dāng)a=1,b=-2時(shí),g(x)=f(x)-2,把f(x)圖象向下平移兩個(gè)單位就可得到g(x)圖象,
這時(shí)函數(shù)g(x)只有兩個(gè)零點(diǎn),所以(1)不對(duì)
(2)若a=-1,-2<b<0,則把函數(shù)f(x)作關(guān)于x軸對(duì)稱圖象,然后向下平移不超過2個(gè)單位就可得到g(x)圖象,這時(shí)g(x)有超過2的零點(diǎn)
(3)當(dāng)a<0時(shí), y=af(x)根據(jù)定義可斷定是奇函數(shù),如果b≠0,把奇函數(shù)y=af(x)圖象再向上(或向下)平移后才是y=g(x)=af(x)+b的圖象,那么肯定不會(huì)再關(guān)于原點(diǎn)對(duì)稱了,肯定不是奇函數(shù);當(dāng)b=0時(shí)才是奇函數(shù),所以(3)不對(duì)。所以正確的只有(2)
為了考察高中生學(xué)習(xí)語文與數(shù)學(xué)之間的關(guān)系,在某中學(xué)學(xué)生中隨機(jī)地抽取了610名學(xué)生得到如下列表:
語文 數(shù)學(xué) | 及格 | 不及格 | 總計(jì) |
及格 | 310 | 142 | 452 |
不及格 | 94 | 64 | 158 |
總計(jì) | 404 | 206 | 610 |
由表中數(shù)據(jù)計(jì)算及的觀測值問在多大程度上可以認(rèn)為高中生的語文與數(shù)學(xué)成績之間有關(guān)系?為什么?
16.(2)解(1)當(dāng)a=1,b=-2時(shí),g(x)=f(x)-2,把f(x)圖象向下平移兩個(gè)單位就可得到g(x)圖象,
這時(shí)函數(shù)g(x)只有兩個(gè)零點(diǎn),所以(1)不對(duì)
(2)若a=-1,-2<b<0,則把函數(shù)f(x)作關(guān)于x軸對(duì)稱圖象,然后向下平移不超過2個(gè)單位就可得到g(x)圖象,這時(shí)g(x)有超過2的零點(diǎn)
(3)當(dāng)a<0時(shí), y=af(x)根據(jù)定義可斷定是奇函數(shù),如果b≠0,把奇函數(shù)y=af(x)圖象再向上(或向下)平移后才是y=g(x)=af(x)+b的圖象,那么肯定不會(huì)再關(guān)于原點(diǎn)對(duì)稱了,肯定不是奇函數(shù);當(dāng)b=0時(shí)才是奇函數(shù),所以(3)不對(duì)。所以正確的只有(2)
一盒中放有大小相同的紅色、綠色、黃色三種小球,已知紅球個(gè)數(shù)是綠球個(gè)數(shù)的兩倍,黃球個(gè)數(shù)是綠球個(gè)數(shù)的一半,現(xiàn)在從該盒中隨機(jī)取出一球,若取出紅球得1分,取出黃球得0分,取出綠球得-1分,試寫出從該盒中取出一球所得分?jǐn)?shù)Y的分布列.
語文 數(shù)學(xué) | 及格 | 不及格 | 總計(jì) |
及格 | 310 | 142 | 452 |
不及格 | 94 | 64 | 158 |
總計(jì) | 404 | 206 | 610 |
1. 構(gòu)造向量,,所以,.由數(shù)量積的性質(zhì),得,即的最大值為2.
2. ∵,令得,所以,當(dāng)時(shí),,當(dāng)時(shí),,所以當(dāng)時(shí),.
3.∵,∴,,又,∴,則,所以周期.作出在上的圖象知:若,滿足條件的()存在,且,關(guān)于直線對(duì)稱,,關(guān)于直線對(duì)稱,∴;若,滿足條件的()存在,且,關(guān)于直線對(duì)稱,,關(guān)于直線對(duì)稱,
∴.
4. 不等式()表示的區(qū)域是如圖所示的菱形的內(nèi)部,
∵,
當(dāng),點(diǎn)到點(diǎn)的距離最大,此時(shí)的最大值為;
當(dāng),點(diǎn)到點(diǎn)的距離最大,此時(shí)的最大值為3.
5. 由于已有兩人分別抽到5和14兩張卡片,則另外兩人只需從剩下的18張卡片中抽取,共有種情況.抽到5 和14的兩人在同一組,有兩種情況:
(1) 5 和14 為較小兩數(shù),則另兩人需從15~20這6張中各抽1張,有種情況;
(2) 5 和14 為較大兩數(shù),則另兩人需從1~4這4張中各抽1張,有種情況.
于是,抽到5 和14 兩張卡片的兩人在同一組的概率為.
6. ∵,∴,
設(shè),,則.
作出該不等式組表示的平面區(qū)域(圖中的陰影部分).
令,則,它表示斜率為的一組平行直線,易知,當(dāng)它經(jīng)過點(diǎn)時(shí),取得最小值.
解方程組,得,∴
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com