題目列表(包括答案和解析)
如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.
(Ⅰ)證明PC⊥AD;
(Ⅱ)求二面角A-PC-D的正弦值;
(Ⅲ)設(shè)E為棱PA上的點,滿足異面直線BE與CD所成的角為30°,求AE的長.
【解析】解法一:如圖,以點A為原點建立空間直角坐標系,依題意得A(0,0,0),D(2,0,0),C(0,1,0), ,P(0,0,2).
(1)證明:易得,于是,所以
(2) ,設(shè)平面PCD的法向量,
則,即.不防設(shè),可得.可取平面PAC的法向量于是從而.
所以二面角A-PC-D的正弦值為.
(3)設(shè)點E的坐標為(0,0,h),其中,由此得.
由,故
所以,,解得,即.
解法二:(1)證明:由,可得,又由,,故.又,所以.
(2)如圖,作于點H,連接DH.由,,可得.
因此,從而為二面角A-PC-D的平面角.在中,,由此得由(1)知,故在中,
因此所以二面角的正弦值為.
(3)如圖,因為,故過點B作CD的平行線必與線段AD相交,設(shè)交點為F,連接BE,EF. 故或其補角為異面直線BE與CD所成的角.由于BF∥CD,故.在中,故
在中,由,,
可得.由余弦定理,,
所以.
1. 構(gòu)造向量,,所以,.由數(shù)量積的性質(zhì),得,即的最大值為2.
2. ∵,令得,所以,當(dāng)時,,當(dāng)時,,所以當(dāng)時,.
3.∵,∴,,又,∴,則,所以周期.作出在上的圖象知:若,滿足條件的()存在,且,關(guān)于直線對稱,,關(guān)于直線對稱,∴;若,滿足條件的()存在,且,關(guān)于直線對稱,,關(guān)于直線對稱,
∴.
4. 不等式()表示的區(qū)域是如圖所示的菱形的內(nèi)部,
∵,
當(dāng),點到點的距離最大,此時的最大值為;
當(dāng),點到點的距離最大,此時的最大值為3.
5. 由于已有兩人分別抽到5和14兩張卡片,則另外兩人只需從剩下的18張卡片中抽取,共有種情況.抽到5 和14的兩人在同一組,有兩種情況:
(1) 5 和14 為較小兩數(shù),則另兩人需從15~20這6張中各抽1張,有種情況;
(2) 5 和14 為較大兩數(shù),則另兩人需從1~4這4張中各抽1張,有種情況.
于是,抽到5 和14 兩張卡片的兩人在同一組的概率為.
6. ∵,∴,
設(shè),,則.
作出該不等式組表示的平面區(qū)域(圖中的陰影部分).
令,則,它表示斜率為的一組平行直線,易知,當(dāng)它經(jīng)過點時,取得最小值.
解方程組,得,∴
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com