(2)求二面角的余弦值. 查看更多

 

題目列表(包括答案和解析)

如圖在直三棱柱中,.

(Ⅰ)求證:;(Ⅱ)求二面角的余弦值大小;

(Ⅲ)在上是否存在點,使得∥平面, 若存在,試給出證明;若不存在,請說明理由.

 

 

 

查看答案和解析>>

如圖在直三棱柱中,.
(Ⅰ)求證:;(Ⅱ)求二面角的余弦值大小;
(Ⅲ)在上是否存在點,使得∥平面, 若存在,試給出證明;若不存在,請說明理由.

查看答案和解析>>

PA⊥平面ABC,ACBC,PA=AC=1,BC=,求二面角APBC的余弦值.

查看答案和解析>>

若PA⊥平面ABC,AC⊥BC,PA=AC=1,BC=,求二面角A—PB—C的余弦值.

查看答案和解析>>

三棱柱中,,底面,為棱的中點,且.    

(1)求二面角的余弦值.

(2)棱上是否存在一點,使平面,

若存在,試確定點位置,若不存在,請說明理由.

查看答案和解析>>

一、選擇題

DDDCC         CDAAB

二、填空題

11、           12、        13、     14、17    0     15、②③

三、解答題

16、⑴

         

      

 

17、(1),其定義域為.

.……………………………………………………2′

時,時,故當且僅當時,.   6′

(2)

由(1)知,     …………………………9′

…………………………………………12′′18、(1)符合二項分布

0

1

2

3

4

5

6

……6′

(2)可取15,16,18.

*表示勝5場負1場,;………………………………7′

表示勝5場平1場,;………………………………8′

*表示6場全勝,.……………………………………………9′

.………………………………………………………………12(

19、解:(1)以所在直線為軸,以所在直線為軸,以所在直線為軸,建立如圖所示的空間直角坐標系,由題意可知、、………2′

                   的坐標為     

,              

                      而,

的公垂線…………………………………………………………4′

(2)令面的法向量,

,則,即而面的法向量

……6′ ∴二面角的大小為.……8′

(3)    面的法向量為     到面的距離為

     即到面的距離為.…………12′

20、解:(1)假設存在,使,則,同理可得,以此類推有,這與矛盾。則不存在,使.……3分

(2)∵當時,

,,則

相反,而,則.以此類推有:

;……7分

(3)∵當時,,,則

 …9分

。)……10分

.……12分

21、解(1)設     

          

①-②得

   ……………………2′

直線的方程是  整理得………………4′

(2)聯(lián)立解得

的方程為聯(lián)立消去,整理得

………………………………6′

 

          又

…………………………………………8′

(3)直線的方程為,代入,得

………………………………………………10′

三點共線,三點共線,且在拋物線的內(nèi)部。

、

故由可推得

  同理可得:

………………………………14′

 

 


同步練習冊答案