19.某車間在三天內(nèi).每天生產(chǎn)10件某產(chǎn)品.其中第一天.第二天分別生產(chǎn)出了1件.2件次品.而質(zhì)檢部每天要從生產(chǎn)的10件產(chǎn)品中隨意抽取4件進(jìn)行檢查.若發(fā)現(xiàn)有次品.則當(dāng)天的產(chǎn)品不能通過. (1)求第一天通過檢查的概率, (2)求前兩天全部通過檢查的概率, (3)若廠內(nèi)對車間生產(chǎn)的產(chǎn)品采用記分制:兩天全不通過檢查得0分.通過1天.2天分別得1分.2分.求該車間在這兩天內(nèi)得分X的數(shù)學(xué)期望. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)

某車間在三天內(nèi),每天生產(chǎn)件某產(chǎn)品,其中第一天、第二天、第三天分別生產(chǎn)出了件、件、件次品,質(zhì)檢部門每天要從生產(chǎn)的件產(chǎn)品中隨機(jī)抽取件進(jìn)行檢測,若發(fā)現(xiàn)其中有次品,則當(dāng)天的產(chǎn)品不能通過.

(1)求第一天的產(chǎn)品通過檢測的概率;

(2)求這三天內(nèi),恰有兩天能通過檢測的概率.

查看答案和解析>>

(本小題滿分12分)

某車間在三天內(nèi),每天生產(chǎn)件某產(chǎn)品,其中第一天、第二天、第三天分別生產(chǎn)出了件、件、件次品,質(zhì)檢部門每天要從生產(chǎn)的件產(chǎn)品中隨機(jī)抽取件進(jìn)行檢測,若發(fā)現(xiàn)其中有次品,則當(dāng)天的產(chǎn)品不能通過.

(1)求第一天的產(chǎn)品通過檢測的概率;

(2)記隨機(jī)變量為三天中產(chǎn)品通過檢測的天數(shù),求的分布列及數(shù)學(xué)期望

查看答案和解析>>

(本小題滿分12分)

某車間在三天內(nèi),每天生產(chǎn)件某產(chǎn)品,其中第一天、第二天、第三天分別生產(chǎn)出了件、件、件次品,質(zhì)檢部門每天要從生產(chǎn)的件產(chǎn)品中隨機(jī)抽取件進(jìn)行檢測,若發(fā)現(xiàn)其中有次品,則當(dāng)天的產(chǎn)品不能通過.

(1)求第一天的產(chǎn)品通過檢測的概率;

(2)記隨機(jī)變量為三天中產(chǎn)品通過檢測的天數(shù),求的分布列及數(shù)學(xué)期望

查看答案和解析>>

(本小題滿分12分)

某車間在三天內(nèi),每天生產(chǎn)件某產(chǎn)品,其中第一天、第二天、第三天分別生產(chǎn)出了件、件、件次品,質(zhì)檢部門每天要從生產(chǎn)的件產(chǎn)品中隨機(jī)抽取件進(jìn)行檢測,若發(fā)現(xiàn)其中有次品,則當(dāng)天的產(chǎn)品不能通過.

(1)求第一天的產(chǎn)品通過檢測的概率;

(2)求這三天內(nèi),恰有兩天能通過檢測的概率.

查看答案和解析>>

(本小題滿分12分)某車站每天上午發(fā)出兩班客車,第一班客車在8∶00,8∶20,8∶40這三個時刻隨機(jī)發(fā)出,且在8∶00發(fā)出的概率為,8∶20發(fā)出的概率為,8∶40發(fā)出的概率為;第二班客車在9∶00,9∶20,9∶40這三個時刻隨機(jī)發(fā)出,且在9∶00發(fā)出的概率為,9∶20發(fā)出的概率為,9∶40發(fā)出的概率為.兩班客車發(fā)出時刻是相互獨(dú)立的,一位旅客預(yù)計8∶10到站.求:   (1)請預(yù)測旅客乘到第一班客車的概率; (2)旅客候車時間的分布列;   (3)旅客候車時間的數(shù)學(xué)期望.

查看答案和解析>>

一、選擇題     DBDAC    DCCCD    CB 

<small id="dcnta"><label id="dcnta"><tr id="dcnta"></tr></label></small>
<pre id="dcnta"></pre>

天星

13.;           14.-10,2;   15.;              16.540

三、簡答題

17.(1),

          cosC=,C=

   (2)c2=a2+b2-2abcosC,c=,=a2+b2-ab=(a+b)2-3ab.

S=abs1nC=abs1n=ab=

            Ab=6,(a+b)2=+3ab=+18=,a+b=

18.方法一:(1)解:取AD中點(diǎn)O,連結(jié)PO,BO.

              △PAD是正三角形,所以PO⊥AD,…………1分

              又因為平面PAD⊥平面ABCD,所以,PO⊥平面ABCD, …………3分

              BO為PB在平面ABCD上的射影, 

所以∠PBO為PB與平面ABCD所成的角.…………4分

              由已知△ABD為等邊三角形,所以PO=BO=,

所以PB與平面ABCD所成的角為45°     ………5分

   (2)△ABD是正三角形,所以AD⊥BO,所以AD⊥PB,  ………………6分

              又,PA=AB=2,N為PB中點(diǎn),所以AN⊥PB,    ………………8分

              所以PB⊥平面ADMN.              ………………9分

   (3)連結(jié)ON,因為PB⊥平面ADMN,所以O(shè)N為PO在平面ADMN上的射影,

              因為AD⊥PO,所以AD⊥NO,             ………………11分

              故∠PON為所求二面角的平面角.            ………………12分

              因為△POB為等腰直角三角形,N為斜邊中點(diǎn),所以∠PON=45°,

19.(1)隨意抽取4件產(chǎn)品檢查是隨機(jī)事件,而第一天有9件正品

           第一天通過檢查的概率為               ……5分

(2)同(1),第二天通過檢查的概率為           ……7分

          因第一天,第二天是否通過檢查相互獨(dú)立

          所以,兩天全部通過檢查的概率為:           ……10分

(3)記得分為,則的值分別為0,1,2

                             ……11分

                            ……12分

                                     ……13分

因此,    

20.(1)yn=2logaxn,yn+1=2logaxn+1 ,yn+1 ? yn=2[logaxn+1 ? logaxn]=2loga

{xn}為等比數(shù),為定值,所以{yn}為等差數(shù)列

又因為y6- y3=3d=-6,d=-2,y1=y3-2d =22,

Sn=22n+= - n2+23n,故當(dāng)n=11或n=12時,Sn取得最大值132

(2)yn=22+(n-1)(-2)=2logaxn,xn=a12n>1

當(dāng)a>1時,12-n>0,   n<12;當(dāng)0<a<1時,12-n<0   n>12,

              所以當(dāng)0<a<1時,存在M=12,當(dāng)n>M時,xn>1恒成立。

21.(1)設(shè)點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,

,解得,所以

當(dāng)且僅當(dāng)時,取到最大值

(2)由

,

.  ②

設(shè)的距離為,則,又因為,

所以,代入②式并整理,得,

解得,,代入①式檢驗,,

故直線的方程是

,或

22.(1)由K=e得f(x)=ex-ex, 所以f’(x)=ex-e. 由f’(x)>0得x>1,故f(x)的單調(diào)增區(qū)間

為(1,+∞),由f’(x)<0得x<1,故f(x)的單調(diào)遞減區(qū)間為(-∞,1)(3分)

   (2)由f(|x|)>0對任意x∈R成立等價于f(x)>0對任意x≥0成立。由f’(x)=ex-k=0得x=lnk.  

①當(dāng)k∈(0,1) 時 ,f’(x)=ex-k ≥1-k≥0(x>0),此時f(x)在(0,+∞上單調(diào)遞增,故f(x)

≥f(0)==1>),符合題意。②當(dāng)k∈(1,+∞)時,lnk>0,當(dāng)X變化時,f’(x)、f(x)的變化情況

如下表:

X

(0,lnk)

lnk

(lnk,+ ∞)

f’(x)

0

+

f(x)

單調(diào)遞減

極小值

單調(diào)遞增

 

 

 

由此可得,在(0,+∞)上f(x)≥f(lnk)=k-lnk.依題意,k-klnk>0,又k>1,所以1<k<e.

綜上所述,實(shí)數(shù)k的取值范圍是0<k<e.  (8分)

    (3)因為F(x)=f(x)+f(-x)=ex+ex,所以F(x1)F(x2)=

,

所以F(1)F(    n)>en+1+2,F(2)F(n-1)>en+1+2……F(n)F(1)>en+1+2.

由此得,[F(1)F(2)…F(n)]2=[F(1)F(n)][F(2)F(n-1)]…[F(n)F(1)]>(en+1+2)n

故F(1)F(2)…F(n)>(en+1+2) ,n∈N*     …….12分

 


同步練習(xí)冊答案