題目列表(包括答案和解析)
已知,的圖象向右平移個(gè)單位再向下平移個(gè)單位后得到函數(shù)的圖象。
(Ⅰ)求函數(shù)的表達(dá)式;(Ⅱ)當(dāng)時(shí),求在區(qū)間上的最大值與最小值;
( Ⅲ)若函數(shù)上的最小值為的最大值。
已知,的最小值為,求的值
已知,的取值范圍是,,則函數(shù)的最小值為_(kāi)__________.
已知,,的夾角為60o, , ,當(dāng)實(shí)數(shù)為何值時(shí),⑴∥ ⑵
已知,的取值如下表所示:
0 |
1 |
3 |
4 |
|
2.2 |
4.3 |
4.8 |
6.7 |
從散點(diǎn)圖分析,與線性相關(guān),且,則的值為 ▲ .
一、填空題(本大題滿分48分,每小題4分,共12小題)
1.; 2.; 3.; 4.; 5.;
6.; 7.; 8.; 9.; 10.;
11.; 12..
二、選擇題(本大題滿分16分,每小題4分,共4小題)
13.C; 14.A; 15.B; 16.C;
三、解答題(本大題滿分86分,本大題共有6題)
17.(1);
(2);
18.1號(hào)至4號(hào)正四棱柱形容器是體積依次為。
∵ ,,
∴ 存在必勝方案,即選擇3號(hào)和4號(hào)容器。
19.(1)∵ 由正弦定理,,∴ ,。
∵ , ∴ ,即。∴ 。
(2)∵ ,
∴ 。
20.(1)設(shè)放水分鐘內(nèi)水箱中的水量為升
依題意得;
分鐘時(shí),水箱的水量升, 放水后分鐘水箱內(nèi)水量接近最少;
(2)該淋浴器一次有個(gè)人連續(xù)洗浴, 于是,,
所以,一次可最多連續(xù)供7人洗浴。
21.(1)由及,∴時(shí)成等比數(shù)列。
(2)因,由(1)知,,故。
(3)設(shè)存在,使得成等差數(shù)列,則,
即因,所以,
∴不存在中的連續(xù)三項(xiàng)使得它們可以構(gòu)成等差數(shù)列。
22.(1)解:設(shè)為函數(shù)圖像的一個(gè)對(duì)稱點(diǎn),則對(duì)于恒成立.即對(duì)于恒成立,
由,故圖像的一個(gè)對(duì)稱點(diǎn)為.
(2)解:假設(shè)是函數(shù)(的圖像的一個(gè)對(duì)稱點(diǎn),
則(對(duì)于恒成立,
即對(duì)于恒成立,因?yàn)?sub>,所以不
恒成立,
即函數(shù)(的圖像無(wú)對(duì)稱點(diǎn).
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com