17. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)二次函數(shù)的圖象經(jīng)過三點.

(1)求函數(shù)的解析式(2)求函數(shù)在區(qū)間上的最大值和最小值

查看答案和解析>>

(本小題滿分12分)已知等比數(shù)列{an}中, 

   (Ⅰ)求數(shù)列{an}的通項公式an;

   (Ⅱ)設(shè)數(shù)列{an}的前n項和為Sn,證明:;

   (Ⅲ)設(shè),證明:對任意的正整數(shù)n、m,均有

查看答案和解析>>

(本小題滿分12分)已知函數(shù),其中a為常數(shù).

   (Ⅰ)若當(dāng)恒成立,求a的取值范圍;

   (Ⅱ)求的單調(diào)區(qū)間.

查看答案和解析>>

(本小題滿分12分)

甲、乙兩籃球運動員進行定點投籃,每人各投4個球,甲投籃命中的概率為,乙投籃命中的概率為

   (Ⅰ)求甲至多命中2個且乙至少命中2個的概率;

   (Ⅱ)若規(guī)定每投籃一次命中得3分,未命中得-1分,求乙所得分?jǐn)?shù)η的概率分布和數(shù)學(xué)期望.

查看答案和解析>>

(本小題滿分12分)已知是橢圓的兩個焦點,O為坐標(biāo)原點,點在橢圓上,且,圓O是以為直徑的圓,直線與圓O相切,并且與橢圓交于不同的兩點A、B.

   (1)求橢圓的標(biāo)準(zhǔn)方程;w.w.w.k.s.5.u.c.o.m        

   (2)當(dāng)時,求弦長|AB|的取值范圍.

查看答案和解析>>

說明:

1.本解答僅給出了一種解法供參考,如果考生的解法與本解答不同,可根據(jù)試題的主要考查內(nèi)容對照評分標(biāo)準(zhǔn)制訂相應(yīng)的評分細(xì)則。

2.評閱試卷,應(yīng)堅持每題評閱到底,不要因為考生的解答中出現(xiàn)錯誤而中斷對該題的評閱,當(dāng)考生的解答在某一步出現(xiàn)錯誤時,如果后繼部分的解答未改變該題的內(nèi)容和難度,可視影響的程度決定后繼部分的給分,但不得超過該部分正確解答應(yīng)得分?jǐn)?shù)的一半;如果后繼部分的解答有較嚴(yán)重的錯誤,就不再給分。

3.解答右端所注分?jǐn)?shù),表示考生正確做到這一步應(yīng)得的累加分?jǐn)?shù)。

4.給分或扣分均以1分為單位,選擇題和填空題不給中間分。

一.選擇題:本題考查基本知識和基本運算

DDDBB;CDACA;CA

二.填空題:本題考查基本知識和基本運算

13.2;           14.               15.  2;           16. ①②③④

 

三.解答題:(本大題共6小題,共74分,解答應(yīng)寫出文字說明,證明過程或演算步驟)

17.(本小題滿分12分)

解:(I)解:

…………………………………………6分

        由 ,得   

        的單調(diào)遞增區(qū)間為

   (II)的圖象關(guān)于直線對稱,

               

              

18.(本小題滿分12分)

解:(Ⅰ)當(dāng)M是A1C1中點時,BC1//平面MB1A.…2分

∵M為A1C1中點,延長AM、CC1,使AM與CC1    

延長線交于N,則NC1=C1C=a.

連結(jié)NB1并延長與CB延長線交于G,

則BG=CB,NB1=B1G.………………………4分

在△CGN中,BC1為中位線,BC1//GN.

又GN平面MAB1,

∴BC1//平面MAB1 .………………………6分

(Ⅱ)∵BC1//平面MB1A,∴M是A1C1中點.

∵△AGC中, BC=BA=BG ,∴∠GAC=90°.

即AC⊥AG,  又AG⊥AA1 ,  

∴AG⊥平面A1ACC1

,………………………………  8分

∴∠MAC為平面MB1A與平面ABC所成二面角的平面角.

∴所求銳二面角大小為.    …………………………………………10分

(Ⅲ)設(shè)動點M到平面A1ABB1的距離為

.當(dāng)點M與點C1重合時,三棱錐B―AB1M的體積最大,最大值為 …12分

 

19.(本小題滿分12分)

解:設(shè)搖獎一次,獲得一、二、三、四、五等獎的事件分別記為A,B,C,D,E。搖獎的概率大小與扇形區(qū)域 A,B,C,D,E所對應(yīng)的圓心角大小成正比。

,     2分

(1)搖獎兩次,均獲得一等獎的概率;     4分

(2)購物滿40元即可獲得兩次搖獎機會,所得的獎金數(shù)為可以為2、3、4、5、6、7、8、9、10。從而有

  7分

所以的分布列為:

2

3

4

5

6

7

8

9

10

8分

 

  10分

(3)由(2)知消費者剛好消費40元兩次搖獎機會搖獎所得的平均獎數(shù)為4.63元;若選擇讓利獲得的優(yōu)惠為,顯然4.63元 >4元。故選擇搖獎比較劃算。12分

(文)解:設(shè)搖獎一次,獲得一、二、三、四、五等獎的事件分別記為A,B,C,D,E。搖獎的概率大小與扇形區(qū)域 A,B,C,D,E所對應(yīng)的圓心角大小成正比。,   3分

(1)搖獎一次,至多獲得三等獎的事件記為F,則; 即搖獎一次,至多獲得三等獎的概率為

5分

(2)搖獎兩次,均獲得一等獎的概率  8分

(3)購物滿40元即可獲得兩次搖獎機會,由題意知,獎金數(shù)的可能值為8、9、10。某消費者購物滿40元,搖獎后獎金數(shù)不低于8元的事件記為G,則有

答:某消費者購物滿40元,搖獎后獎金數(shù)不低于8元的概率為。12分

 

20.(本小題滿分12分)

解:(Ⅰ)設(shè)、、,則

,

由此及

,即

(Ⅱ)當(dāng)時,曲線的方程為。

依題意,直線均不可能與坐標(biāo)軸平行,故不妨設(shè)直線),直線,從而有

。

同理,有

是等腰三角形,則,由此可得

,即。

    下面討論方程的根的情形():

    ①若,則,方程沒有實根;

②若,則,方程有兩個相等的實根

③若,則,方程有兩個相異的正實根,且均不等于(因為

)。

    綜上所述,能是等腰三角形:當(dāng)時,這樣的三角形有且僅有一個;而當(dāng)時,這樣的三角形有且僅有三個。

21.解:(I)………………2分

        當(dāng)時,;當(dāng)時,

   ,(1,內(nèi)單調(diào)遞增,在內(nèi)單調(diào)遞減…………4分

     故的極小值為  ……………………………………5分

(II)①若  的圖象與軸只有一個交點。……6分

②若,當(dāng)時,,當(dāng)時,

的極大值為

的極小值為  的圖象與軸有三個公共點。

③若,則。

 當(dāng)時,,當(dāng)時,

的圖象與軸只有一個交點

④若,則 的圖象與軸只有一個交點

⑤當(dāng),由(I)知的極大值為

綜上所述,若的圖象與軸只有一個公共點;

,的圖象與軸有三個公共點。

 

 

22.(本小題滿分14分)

解:(Ⅰ)∵第n個集合有n個奇數(shù),∴在前n個集合中共有奇數(shù)的個數(shù)為

.…………………………………… 2分

則第n個集合中最大的奇數(shù)=.………………4分

(Ⅱ)(i)由(Ⅰ)得 ,

從而得.……………………………………6分

(ii)由(i)得 , ∴ .…7分

(1)當(dāng)時,,顯然2≤.……………………………………8分

(2)當(dāng)≥2 時, ………9分

> ,……………………………………………10分

.………………………………………………12分

<  .即

綜上所述,2≤ . ……………………………………………………14分


同步練習(xí)冊答案