2 答卷前.請將密封線內(nèi)的項目填寫清楚 查看更多

 

題目列表(包括答案和解析)

給定下列命題:
(1)空間直角坐標(biāo)系O-XYZ中,點A(-2,3,-1)關(guān)于平面XOZ的對稱點為A′(-2,-3,-1).
(2)棱長為1的正方體外接球表面積為8π.
(3)已知等比數(shù)列{an}的前n項和為Sn,若Sn=2n+c(c為常數(shù)),則c=-1.
(4)若非零實數(shù)a1,b1,a2,b2滿足
a1
a2
=
b1
b2
,則集合{x|a1x+b1>0}={x|a2x+b2>0}.
(5)已知等差數(shù)列{an}的前n項和為Sn,則點P1(1,
S1
1
)、P2(2,
S2
2
)、…、Pn(n,
Sn
n
)
(n∈N*)必在同一直線上.
以上正確的命題是
(1)(3)(5)
(1)(3)(5)
(請將你認(rèn)為正確的命題的序號都填上).

查看答案和解析>>

關(guān)于函數(shù)R)的如下結(jié)論:

 

是奇函數(shù);                  ②函數(shù)的值域為(-2,2);

③若,則一定有;  ④函數(shù)在R上有三個零點.

其中正確結(jié)論的序號有          .(請將你認(rèn)為正確的結(jié)論的序號都填上) 

 

查看答案和解析>>

 關(guān)于函數(shù)R)的如下結(jié)論:

是奇函數(shù);                  ②函數(shù)的值域為(-2,2);

③若,則一定有;  ④函數(shù)R上有三個零點.

其中正確結(jié)論的序號有          .(請將你認(rèn)為正確的結(jié)論的序號都填上) 

 

查看答案和解析>>

(2013•煙臺一模)給出下列命題:
①函數(shù)y=
x
x2+4
在區(qū)間[1,3]上是增函數(shù);
②函數(shù)f(x)=2x-x2的零點有3個;
③函數(shù)y=sin x(x∈[-π,π])圖象與x軸圍成的圖形的面積是S=
π
sinxdx
;
④若ξ~N(1,σ2),且P(0≤ξ≤1)=0.3,則P(ξ≥2)=0.2.
其中真命題的序號是(請將所有正確命題的序號都填上):
②④
②④

查看答案和解析>>

如圖是將二進制數(shù)11111(2)化為十進制數(shù)的一個程序框圖.
(1)將判斷框內(nèi)的條件補充完整;
(2)請用直到型循環(huán)結(jié)構(gòu)改寫流程圖.

查看答案和解析>>

一、選擇題:(本大題共10小題,每小題5分,共50分)

  1 B  2 A  3  文C(理C) 4  D  5  文A(理B) 6  文B(理C)   7  文C(理C)   8  文C(理A)   9  文A (理D) 10  文D(理A)

二、填空題:(本大題共6小題,每小題4分,共24分 )

11  (文)“若,則” ,(理)

12  (文) ,(理), 

13  (文),(理)-2

14  -2      15            16  ②④

三、解答題:(本大題共6個解答題,滿分76分,)

17  (文)解:以AN所在直線為x軸,AN的中垂

線為y軸建立平面直角坐標(biāo)系如圖所示,

則A(-4,0),N(4,0),設(shè)P(x,y)  

由|PM|:|PN|=,|PM|2=|PA|2 ?|MA|2得:

                             

代入坐標(biāo)得:        

整理得:                        

                            

所以動點P的軌跡是以點

(理)解:(I)當(dāng)a=1時  

                            

 或         

                               

(II)原不等式              

設(shè) 

當(dāng)且僅當(dāng)

                    

依題有:10a<10  ∴為所求  

 18  (文)解:

  

   解得        

                   

                            

 

若由方程組解得,可參考給分

(理)解:(Ⅰ)設(shè)    (a≠0),則

           ……     ①

          ……    ②

又∵有兩等根

      ∴……  ③

由①②③得                         

又∵

  ∴a<0, 故

                        

    (Ⅱ)

                        

       ∵g(x)無極值

       ∴方程

      

      得                      

19  (文)解:(I)當(dāng)a=1時  

                            

 或         

                              

(II)原不等式              

設(shè) 

當(dāng)且僅當(dāng)

                   

依題有:10a<10  ∴為所求                       

 

(理)解:以AN所在直線為x軸,AN的中垂

線為y軸建立平面直角坐標(biāo)系如圖所示,

則A(-4,0),N(4,0),設(shè)P(x,y)  

由|PM|:|PN|=,|PM|2=|PA|2 ?|MA|2得:

                              

代入坐標(biāo)得:        

整理得:                       

                            

所以動點P的軌跡是以點

20  (文)解:(Ⅰ)設(shè)    (a≠0),則

           ……     ①

          ……    ②

又∵有兩等根

      ∴……  ③

由①②③得                         

又∵

  ∴a<0, 故

                       

    (Ⅱ)

                        

       ∵g(x)無極值

       ∴方程

      

      得                             

(理)解:(I)設(shè)       (1)

     (2)

由(1),(2)解得              

(II)由向量與向量的夾角為

及A+B+C=知A+C=

            

     

由0<A<,得

的取值范圍是                      

 

21   解:(I)由已知得Sn=2an-3n,

Sn+1=2an+1-3(n+1),兩式相減并整理得:an+1=2an+3            

所以3+ an+1=2(3+an),又a1=S1=2a1-3,a1=3可知3+ a1=6,進而可知an+3

所以,故數(shù)列{3+an}是首相為6,公比為2的等比數(shù)列,

所以3+an=6,即an=3()                           

同步練習(xí)冊答案