(理)若.對任意實(shí)數(shù)都有.且, 則實(shí)數(shù)的值等于 查看更多

 

題目列表(包括答案和解析)

設(shè)S是實(shí)數(shù)集R的非空子集,如果?a,b∈S,有a+b∈S,a-b∈S,則稱S是一個(gè)“和諧集”.下面命題為假命題的是( 。
A.存在有限集S,S是一個(gè)“和諧集”
B.對任意無理數(shù)a,集合{x|x=ka,k∈Z}都是“和諧集”
C.若S1≠S2,且S1,S2均是“和諧集”,則S1∩S2≠∅
D.對任意兩個(gè)“和諧集”S1,S2,若S1≠R,S2≠R,則S1∪S2=R

查看答案和解析>>

設(shè)S是實(shí)數(shù)集R的非空子集,如果?a,b∈S,有a+b∈S,a-b∈S,則稱S是一個(gè)“和諧集”.下面命題為假命題的是( )
A.存在有限集S,S是一個(gè)“和諧集”
B.對任意無理數(shù)a,集合{x|x=ka,k∈Z}都是“和諧集”
C.若S1≠S2,且S1,S2均是“和諧集”,則S1∩S2≠∅
D.對任意兩個(gè)“和諧集”S1,S2,若S1≠R,S2≠R,則S1∪S2=R

查看答案和解析>>

若函數(shù)f(x)滿足:對定義域內(nèi)任意兩個(gè)不相等的實(shí)數(shù)x1,x2,都有數(shù)學(xué)公式,則稱函數(shù)f(x)為H函數(shù).已知f(x)=x2+cx,且f(x)為偶函數(shù).
(1)求c的值;
(2)求證:f(x)為H函數(shù);
(3)試舉出一個(gè)不為H函數(shù)的函數(shù)g(x),并說明理由.

查看答案和解析>>

若函數(shù)f(x)滿足:對定義域內(nèi)任意兩個(gè)不相等的實(shí)數(shù)x1,x2,都有,則稱函數(shù)f(x)為H函數(shù).已知f(x)=x2+cx,且f(x)為偶函數(shù).
(1)求c的值;
(2)求證:f(x)為H函數(shù);
(3)試舉出一個(gè)不為H函數(shù)的函數(shù)g(x),并說明理由.

查看答案和解析>>

若函數(shù)f(x)滿足:對定義域內(nèi)任意兩個(gè)不相等的實(shí)數(shù)x1,x2,都有,則稱函數(shù)f(x)為H函數(shù).已知f(x)=x2+cx,且f(x)為偶函數(shù).
(1)求c的值;
(2)求證:f(x)為H函數(shù);
(3)試舉出一個(gè)不為H函數(shù)的函數(shù)g(x),并說明理由.

查看答案和解析>>

一、選擇題:(本大題共10小題,每小題5分,共50分)

  1 B  2 A  3  文C(理C) 4  D  5  文A(理B) 6  文B(理C)   7  文C(理C)   8  文C(理A)   9  文A (理D) 10  文D(理A)

二、填空題:(本大題共6小題,每小題4分,共24分。

11  (文)“若,則” ,(理)

12  (文) ,(理), 

13  (文),(理)-2

14  -2      15            16  ②④

三、解答題:(本大題共6個(gè)解答題,滿分76分,)

17  (文)解:以AN所在直線為x軸,AN的中垂

線為y軸建立平面直角坐標(biāo)系如圖所示,

則A(-4,0),N(4,0),設(shè)P(x,y)  

由|PM|:|PN|=,|PM|2=|PA|2 ?|MA|2得:

                             

代入坐標(biāo)得:        

整理得:                        

                            

所以動(dòng)點(diǎn)P的軌跡是以點(diǎn)

(理)解:(I)當(dāng)a=1時(shí)  

                            

 或         

                               

(II)原不等式              

設(shè) 

當(dāng)且僅當(dāng)

時(shí)                    

依題有:10a<10  ∴為所求  

 18  (文)解:

  

   解得        

                   

                            

 

若由方程組解得,可參考給分

(理)解:(Ⅰ)設(shè)    (a≠0),則

           ……     ①

          ……    ②

又∵有兩等根

      ∴……  ③

由①②③得                         

又∵

  ∴a<0, 故

                        

    (Ⅱ)

                        

       ∵g(x)無極值

       ∴方程

      

      得                      

19  (文)解:(I)當(dāng)a=1時(shí)  

                            

 或         

                              

(II)原不等式              

設(shè) 

當(dāng)且僅當(dāng)

時(shí)                   

依題有:10a<10  ∴為所求                       

 

(理)解:以AN所在直線為x軸,AN的中垂

線為y軸建立平面直角坐標(biāo)系如圖所示,

則A(-4,0),N(4,0),設(shè)P(x,y)  

由|PM|:|PN|=,|PM|2=|PA|2 ?|MA|2得:

                              

代入坐標(biāo)得:        

整理得:                       

                            

所以動(dòng)點(diǎn)P的軌跡是以點(diǎn)

20  (文)解:(Ⅰ)設(shè)    (a≠0),則

           ……     ①

          ……    ②

又∵有兩等根

      ∴……  ③

由①②③得                         

又∵

  ∴a<0, 故

                       

    (Ⅱ)

                        

       ∵g(x)無極值

       ∴方程

      

      得                             

(理)解:(I)設(shè)       (1)

     (2)

由(1),(2)解得              

(II)由向量與向量的夾角為

及A+B+C=知A+C=

            

     

由0<A<,得

的取值范圍是                      

 

21   解:(I)由已知得Sn=2an-3n,

Sn+1=2an+1-3(n+1),兩式相減并整理得:an+1=2an+3            

所以3+ an+1=2(3+an),又a1=S1=2a1-3,a1=3可知3+ a1=6,進(jìn)而可知an+3

所以,故數(shù)列{3+an}是首相為6,公比為2的等比數(shù)列,

所以3+an=6,即an=3()                           

同步練習(xí)冊答案