題目列表(包括答案和解析)
過拋物線的對稱軸上的定點(diǎn),作直線與拋物線相交于兩點(diǎn).
(I)試證明兩點(diǎn)的縱坐標(biāo)之積為定值;
(II)若點(diǎn)是定直線上的任一點(diǎn),試探索三條直線的斜率之間的關(guān)系,并給出證明.
【解析】本題主要考查拋物線與直線的位置關(guān)系以及發(fā)現(xiàn)問題和解決問題的能力.
(1)中證明:設(shè)下證之:設(shè)直線AB的方程為: x=ty+m與y2=2px聯(lián)立得消去x得y2=2pty-2pm=0,由韋達(dá)定理得
(2)中:因?yàn)槿龡l直線AN,MN,BN的斜率成等差數(shù)列,下證之
設(shè)點(diǎn)N(-m,n),則直線AN的斜率KAN=,直線BN的斜率KBN=
KAN+KBN=+
本題主要考查拋物線與直線的位置關(guān)系以及發(fā)現(xiàn)問題和解決問題的能力.
如圖,長方體中,底面是正方形,是的中點(diǎn),是棱上任意一點(diǎn)。
(Ⅰ)證明: ;
(Ⅱ)如果=2 ,=,, 求 的長。
【解析】(Ⅰ)因底面是正方形,故,又側(cè)棱垂直底面,可得,而,所以面,因,所以面,又面,所以 ;
(Ⅱ)因=2 ,=,,可得,,設(shè),由得,即,解得,即 的長為。
如圖,在四棱錐中,⊥底面,底面為正方形,,,分別是,的中點(diǎn).
(I)求證:平面;
(II)求證:;
(III)設(shè)PD=AD=a, 求三棱錐B-EFC的體積.
【解析】第一問利用線面平行的判定定理,,得到
第二問中,利用,所以
又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921145879762728/SYS201206192116075476939219_ST.files/image018.png">,,從而得
第三問中,借助于等體積法來求解三棱錐B-EFC的體積.
(Ⅰ)證明: 分別是的中點(diǎn),
,. …4分
(Ⅱ)證明:四邊形為正方形,.
, .
, ,
.,. ………8分
(Ⅲ)解:連接AC,DB相交于O,連接OF, 則OF⊥面ABCD,
∴
如圖1,在Rt△ABC中,∠C=90°,BC=3,AC=6,D,E分別是AC,AB上的點(diǎn),且DE∥BC,DE=2,將△ADE沿DE折起到△A1DE的位置,使A1C⊥CD,如圖2.
(1) 求證:A1C⊥平面BCDE;
(2) 若M是A1D的中點(diǎn),求CM與平面A1BE所成角的大;
(3) 線段BC上是否存在點(diǎn)P,使平面A1DP與平面A1BE垂直?說明理由
【解析】(1)∵DE∥BC∴∴∴∴又∵∴
(2)如圖,以C為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系C-xyz,
則
設(shè)平面的法向量為,則,又,,所以,令,則,所以,
設(shè)CM與平面所成角為。因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912442510881234/SYS201207091244479838554563_ST.files/image021.png">,
所以
所以CM與平面所成角為。
如圖,四棱錐P-ABCD中,底面ABCD為菱形,PA底面ABCD,AC=,PA=2,E是PC上的一點(diǎn),PE=2EC。
(I) 證明PC平面BED;
(II) 設(shè)二面角A-PB-C為90°,求PD與平面PBC所成角的大小
【解析】本試題主要是考查了四棱錐中關(guān)于線面垂直的證明以及線面角的求解的運(yùn)用。
從題中的線面垂直以及邊長和特殊的菱形入手得到相應(yīng)的垂直關(guān)系和長度,并加以證明和求解。
解法一:因?yàn)榈酌鍭BCD為菱形,所以BDAC,又
【點(diǎn)評】試題從命題的角度來看,整體上題目與我們平時練習(xí)的試題和相似,底面也是特殊的菱形,一個側(cè)面垂直于底面的四棱錐問題,那么創(chuàng)新的地方就是點(diǎn)E的位置的選擇是一般的三等分點(diǎn),這樣的解決對于學(xué)生來說就是比較有點(diǎn)難度的,因此最好使用空間直角坐標(biāo)系解決該問題為好。
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com