下面求當(dāng)時.函數(shù)的最小值. 查看更多

 

題目列表(包括答案和解析)

設(shè)函數(shù)
(Ⅰ)寫出函數(shù)的最小正周期及單調(diào)遞減區(qū)間;
(Ⅱ)當(dāng)x∈[]時,函數(shù)f(x)的最大值與最小值的和為,求f(x)的解析式;
(Ⅲ)將滿足(Ⅱ)的函數(shù)f(x)的圖象向右平移個單位,縱坐標(biāo)不變橫坐標(biāo)變?yōu)樵瓉淼?倍,再向下平移,得到函數(shù)g(x),求g(x)圖象與x軸的正半軸、直線所圍成圖形的面積.

查看答案和解析>>

設(shè)函數(shù)
(Ⅰ)寫出函數(shù)的最小正周期及單調(diào)遞減區(qū)間;
(Ⅱ)當(dāng)x∈[]時,函數(shù)f(x)的最大值與最小值的和為,求f(x)的解析式;
(Ⅲ)將滿足(Ⅱ)的函數(shù)f(x)的圖象向右平移個單位,縱坐標(biāo)不變橫坐標(biāo)變?yōu)樵瓉淼?倍,再向下平移,得到函數(shù)g(x),求g(x)圖象與x軸的正半軸、直線所圍成圖形的面積.

查看答案和解析>>

設(shè)函數(shù)f(x)=
3
sinxcosx+cos2x+a

(Ⅰ)寫出函數(shù)的最小正周期及單調(diào)遞減區(qū)間;
(Ⅱ)當(dāng)x∈[-
π
6
,
π
3
]時,函數(shù)f(x)的最大值與最小值的和為
3
2
,求f(x)的解析式;
(Ⅲ)將滿足(Ⅱ)的函數(shù)f(x)的圖象向右平移
π
12
個單位,縱坐標(biāo)不變橫坐標(biāo)變?yōu)樵瓉淼?倍,再向下平移
1
2
,得到函數(shù)g(x),求g(x)圖象與x軸的正半軸、直線x=
π
2
所圍成圖形的面積.

查看答案和解析>>

設(shè)函數(shù)f(x)=
3
sinxcosx+cos2x+a

(Ⅰ)寫出函數(shù)的最小正周期及單調(diào)遞減區(qū)間;
(Ⅱ)當(dāng)x∈[-
π
6
,
π
3
]時,函數(shù)f(x)的最大值與最小值的和為
3
2
,求f(x)的解析式;
(Ⅲ)將滿足(Ⅱ)的函數(shù)f(x)的圖象向右平移
π
12
個單位,縱坐標(biāo)不變橫坐標(biāo)變?yōu)樵瓉淼?倍,再向下平移
1
2
,得到函數(shù)g(x),求g(x)圖象與x軸的正半軸、直線x=
π
2
所圍成圖形的面積.

查看答案和解析>>

設(shè)計一幅宣傳畫,要求畫面面積為4840cm2,畫面的寬與高的比為λ(λ>0),畫面的上、下各留8cm空白,左、右各留5cm空白.
(1)用λ表示宣傳畫所用紙張面積S=f(λ);
(2)判斷函數(shù)S=f(λ)在(0,+∞)上的單調(diào)性,并證明你的結(jié)論;
(3)當(dāng)λ取何值時,宣傳畫所用紙張面積S=f(λ)最?

查看答案和解析>>


同步練習(xí)冊答案